

PIC16C432

OTP 8-Bit CMOS MCU with LIN Transceiver

Devices included in this Data Sheet:

• PIC16C432

High Performance RISC CPU:

- Only 35 instructions to learn
- All single cycle instructions (200 ns), except for program branches which are two-cycle
- · Operating speed:
 - DC 20 MHz clock input
 - DC 200 ns instruction cycle

Device	Program Memory	RAM Data Memory		
PIC16C432	2K x 14	128 x 8		

- · Interrupt capability
- 16 special function hardware registers
- 8-level deep hardware stack
- Direct, Indirect and Relative Addressing modes

Peripheral Features:

- 12 I/O pins with individual direction control
- High current sink/source for direct LED drive
- Analog comparator module with:
 - Two analog comparators
 - Programmable on-chip voltage reference (VREF) module
 - Programmable input multiplexing from device inputs and internal voltage reference
 - Comparator outputs can be output signals
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler
- Integrated LIN Transceiver
- · Wake-up on bus activity
- 12V battery operation for Transceiver
- Thermal shutdown for Transceiver
- · Ground loss protection

PIN DIAGRAM

Ceramic DIP, SSOP, PDIP LIN 🗕 20 **-** VBAT RA2/AN2/VREF -19 **→** BACT **→**□2 RA3/AN3 🗲 18 **□** ← ► RA0/AN0 ► 🗆 3 RA4/T0CKI -17 → OSC1/CLKIN -► 🛛 4 PIÇ MCLR/VPP -5 16 → OSC2/CLKOUT 1002 Vss . 6 15 - VDD 32 14 **→** RB7 RB0/INT -**→**□7 RB1 🖌 • □ 8 13 **] →** RB6 RB2 < **⊳**∏9 12 **→** RB5 RB3 -10 11 **¬**←→ RB4

Special Microcontroller Features:

- In-Circuit Serial Programming (ICSP™) (via two pins)
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- · Programmable code protection
- Power saving SLEEP mode
- Selectable oscillator options
- · Four user programmable ID locations

CMOS Technology:

- Low power, high speed CMOS EPROM/HV-CMOS technology
- · Fully static design
- · Operating voltage range
 - 4.5V to 5.5V
- · Industrial and extended temperature range

Table of Contents

1.0	General Description	3
2.0	PIC16C432 Device Varieties	5
3.0	PIC16C432 Device Varieties	7
4.0	I/O Ports 1	17
5.0	LIN Transceiver	23
6.0	Timer0 Module	27
7.0	Comparator Module	33
8.0		
9.0	Voltage Reference Module	ł3
10.0	Instruction Set Summary	59
11.0	Development Support	73
12.0	Electrical Specifications	79
13.0	DC and AC Characteristics Graphs and Tables) 1
14.0	Packaging Information) 3
Appe	ndix A: Čode for LIN Communication) 7
	: 9	
On-Li	ne Support10)1
Syste	ms Information and Upgrade Hot Line)1
	er Response	
Produ	IC Identification System)3

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

1.0 GENERAL DESCRIPTION

The PIC16C432 is a 20-pin EPROM-based member of the versatile PIC[®] family of low cost, high performance, CMOS, fully-static, 8-bit microcontrollers with an integrated LIN transceiver.

The LIN physical layer is implemented in hardware with a voltage range from 0V to 18V, with a 40V transient capability. The LIN protocol is to be implemented in firmware, which enables flexibility with future revisions of the LIN protocol.

All PIC[®] microcontrollers employ an advanced RISC architecture. The PIC16C432 device has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16C432 microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC16C432 has 12 I/O pins and an 8-bit timer/ counter with an 8-bit programmable prescaler. In addition, the PIC16C432 adds two analog comparators with a programmable on-chip voltage reference module. The comparator module is ideally suited for applications requiring a low cost analog interface (e.g., battery chargers, threshold detectors, white goods controllers, etc.).

PIC16C432 devices have special features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers power savings. The user can wake-up the chip from SLEEP through several external and internal interrupts and RESET. A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

A UV erasable CERDIP packaged version is ideal for code development, while the cost effective One-Time-Programmable (OTP) version is suitable for production in any volume.

A simplified block diagram of the PIC16C432 is shown in Figure 4-1.

The PIC16C432 series fits perfectly in automotive and industrial applications, which require LIN as a communication platform. The EPROM technology makes customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C432 very versatile.

1.1 Development Support

The PIC16C432 family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full-featured programmer. A "C" compiler is also available.

NOTES:

2.0 PIC16C432 DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C432 Product Identification System section at the end of this data sheet.

2.1 UV Erasable Devices

The UV erasable version, offered in the CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PRO MATE[®] programmers support programming of the PIC16C432.

2.2 One-Time-Programmable (OTP) Devices

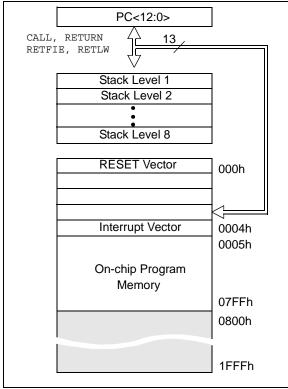
The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turn-Programming (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices, but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 Serialized Quick-Turn-Programming (SQTPSM) Devices

Microchip offers a unique programming service where a few user defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.


Serial programming allows each device to have a unique number which can serve as an entry code, password or ID number. NOTES:

3.0 MEMORY ORGANIZATION

3.1 Program Memory Organization

The PIC16C432 has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 2K x 14 (0000h - 07FFh) are implemented for the PIC16C432. Accessing a location above these boundaries will cause a wrap-around within the first 2K x 14 space. The RESET Vector is at 0000h and the Interrupt Vector is at 0004h (Figure 3-1).

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16C432

3.2 Data Memory Organization

The data memory (Figure 3-2) is partitioned into two Banks, which contain the General Purpose Registers and the Special Function Registers. Bank 0 is selected when the RP0 bit is cleared. Bank 1 is selected when the RP0 bit (STATUS <5>) is set. The Special Function Registers are located in the first 32 locations of each Bank. Register locations 20-7Fh (Bank 0) and A0-BFh (Bank 1) are General Purpose Registers implemented as static RAM. Some special purpose registers are mapped in Bank 1. In the microcontroller, address space F0h-FFh (Bank 1) is mapped to 70-7Fh (Bank 0) as common RAM.

3.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 128×8 in the PIC16C432. Each is accessed either directly or indirectly through the File Select Register FSR (Section 3.4).

FIGURE 3-2: DA

2: DATA MEMORY MAP FOR THE PIC16C432

File Address	3		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h		LININTF	90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh			9Eh
1Fh	CMCON	VRCON	9Fh
20h	General Purpose	General Purpose	A0h
	Register	Register	BFh
			C0h
			F0h
		Accesses	FUI
		70h-7Fh	
7Fh	Bank 0	Bank 1	J FFh
			one road
as	implemented dat '0'.	a memory locali	uns,reau
Note 1:	Not a physical re	egister.	

3.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (Table 3-1). These registers are static RAM.

The special registers can be classified into two sets (core and peripheral). The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
Bank 0										•	•
00h	INDF	Addressin register)	g this locati	on uses co	ntents of FS	SR to addre	ss data mei	mory (not a p	hysical	xxxx xxxx	16
01h	TMR0	Timer0 M	odule's Reg	ister						xxxx xxxx	27
02h	PCL	Program (Counter's (F	C) Least S	ignificant B	yte				0000 0000	15
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	10
04h	FSR	Indirect da	ata memory	address po	ointer					xxxx xxxx	16
05h	PORTA	_	—	_	RA4	RA3	RA2	LINRX	RA0	x 0000	17
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	20
07h	—	Unimplem	ented							—	_
08h	—	Unimplem	ented							—	_
09h	—	Unimplem	ented							—	_
0Ah	PCLATH	-	_	_	Write buffe	er for upper	5 bits of pr	ogram counte	er	0 0000	15
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	12
0Ch	PIR1	-	CMIF	_	—	_	_	_	_	-0	13
0Dh-1Eh	—	Unimplem	ented							—	_
1Fh	CMCON	C2OUT	C1OUT	_	_	CIS	CM2	CM1	CM0	00 0000	33
Bank 1	•									•	
80h	INDF	Addressin register)	g this locati	on uses co	ntents of FS	SR to addre	ss data mei	mory (not a p	hysical	XXXX XXXX	16
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	11
82h	PCL	Program (Counter's (F	C) Least S	Significant By	/te				0000 0000	15
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	10
84h	FSR	Indirect da	ata memory	address po	ointer			-		xxxx xxxx	16
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TLINRX ⁽³⁾	TRISA0	1 1111	17
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	20
87h	_	Unimplem	ented							_	_
88h	_	Unimplem	ented							_	_
89h	_	Unimplem	ented							_	_
8Ah	PCLATH		_	_	Write	buffer for u	pper 5 bits	of program co	ounter	0 0000	15
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	12
8Ch	PIE1	-	CMIE	_	_	—	—	_	_	-0	13
8Dh	—	Unimplem	ented							—	—
8Eh	PCON	_	_	_	_	_	_	POR	BOD	0x	14
8Fh-9Eh	_	Unimplem	ented							_	_
90h	LININTF	_	_	_	_	_	LINTX	_	LINVDD	1-1	23
-		VREN	VROE	VRR		VR3	VR2	VR1	VR0	000- 0000	41

TABLE 3-1: SPECIAL REGISTERS FOR THE PIC16C432

d: — = Unimplemented locations read as '0', <u>u</u> = unchanged, <u>x</u> = unknown, <u>q</u> = value depends on condition, shaded = unimplemented
Other (non power-up) RESETS include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.
IRP & RPI bits are reserved; always maintain these bits clear.
TLINRX must set to '1' at all times. Legend: Note 1

3.2.2.1 STATUS Register

The STATUS register, shown in Register 3-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000uuluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any STATUS bit. For other instructions, not affecting any STATUS bits, see the "Instruction Set Summary".

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16C432 and should be programmed as '0'. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C and DC bits</u> operate as a Borrow and <u>Digit Borrow</u> out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

TER 3-1:	STATUS	REGISTER	(ADDRES	S 03h OR	83h)				
	Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
	IRP	RP1	RP0	TO	PD	Z	DC	С	
	bit7	•			•	•	•	bit0	
bit 7	IRP: The IRP bit	is reserved o	n the PIC16	6C432, alwa	ays maintain	this bit clear			
bit 6-5	11 = Bank 3 10 = Bank 3 01 = Bank 3 00 = Bank 6	RP1:RP0: Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h - 1FFh) 10 = Bank 2 (100h - 17Fh) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) Each bank is 128 bytes. The RP1 bit is reserved, always maintain this bit clear.							
bit 4		t bit wer-up, CLRW timeout occu		on, or SLEI	EP instructio	n			
bit 3	•	down bit wer-up or by cution of the s							
bit 2		ult of an arith ult of an arith	-	-					
bit 1	is reversed) 1 = A carry-	out from the 4	4th low orde	er bit of the	result occur		(for borrow	the polarity	
bit 0	1 = A carry-	rrow bit (ADDI out from the l y-out from the	Most Signifi	cant bit of th	ne result oc	curred			
Note 1:		he polarity is operand. For r of the source	otate (RRF,						
	Legend:								
	R = Readab	ole bit	W = W	ritable bit	U = Unir	mplemented b	oit, read as '	0'	

REGISTER 3-1: STATUS REGISTER (ADDRESS 03h OR 83h)

- n = Value at POR reset

'1' = Bit is set

x = Bit is unknown

'0' = Bit is cleared

3.2.2.2 OPTION Register

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note:	To achieve a 1:1 prescaler assignment for
	TMR0, assign the prescaler to the WDT
	(PSA = 1).

REGISTER 3-2:	OPTION REGISTER (ADDRESS 81h)
---------------	-------------------------------

				,				
	R/W-1	R/W-1	R/W-	1 R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	TOCS	S TOSE	PSA	PS2	PS1	PS0
	bit7	1			•			bit0
bit 7	RBPU: PO							
	1 = PORTB	• •						
	0 = PORTB	s pull-ups a	re enabled	by individual p	oort latch val	ues		
bit 6	INTEDG: In							
	1 = Interrup	•	•	•				
	0 = Interrup	•	•	•				
bit 5	1 = Transiti			Ct Dit				
			•	k (CLKOUT)				
bit 4	TOSE: TMR		•					
DIT 4			•	nsition on RA4	T0CKI pin			
				sition on RA4				
bit 3	PSA: Presc	aler Assigr	nment bit					
	1 = Prescal							
	0 = Prescal	er is assigr	ned to the	Fimer0 module	1			
bit 2-0	PS<2:0> : P	Prescaler Ra	ate Select	bits				
	Bi	t Value T	MR0 Rate	WDT Rate				
	_	000	1:2	1:1				
		001	1:4	1:2				
		010 011	1:8 1:16	1:4 1:8				
		100	1:32	1:16				
		101	1:64	1 : 32 1 : 64				
		110	1:128					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.2.2.3 INTCON Register

The INTCON register is a readable and writable register which contains the various enable and flag bits for all interrupt sources, except the comparator module. See Section 3.2.2.4 and Section 3.2.2.5 for a description of the comparator enable and flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

REGISTER 3-3: INTCON REGISTER (ADDRESS 0Bh OR 8Bh)

- n = Value at POR reset

			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••••••	· •=,			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF
	bit7							bit0
bit 7		Interrupt Ena						
		s all unmaske s all interrupts						
bit 6		heral Interrup						
DILO		s all un-maske						
		s all periphera		-				
bit 5		Overflow Int		ole bit				
		the TMR0 in	•					
		s the TMR0 ir						
bit 4		INT External the RB0/INT						
		s the RB0/IN		•				
bit 3	RBIE: RB P	ort Change I	nterrupt Ena	able bit				
		the RB port	•	•				
		s the RB port	•	•				
bit 2) Overflow Int egister has ov			ared in softw	(are)		
		egister did no	•			arej		
bit 1		INT External		ag bit				
	1 = The RB	0/INT externa	al interrupt c	occurred (m		ed in software	e)	
		0/INT externa			ſ			
bit 0		ort Change Ir			and state (r	must he clear	ad in a ftwar	·••)
	 1 = When at least one of the RB<7:4> pins changed state (must be cleared in software) 0 = None of the RB<7:4> pins have changed state 							e)
			r	enangea on				
	Legend:							
	R = Readab	ole bit	W = W	ritable bit	U = Unir	nplemented b	oit, read as '0)'
							,	

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

3.2.2.4 **PIE1** Register

This register contains the individual enable bit for the comparator interrupt.

REGISTER 3-4: PIE1 REGISTER (ADDRESS 8CH)

	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
		CMIE	_	—	—	_	—	_
	bit7							bit0
bit 7	Unimpleme	nted: Read a	as '0'					
bit 6	CMIE : Comparator Interrupt Flag bit 1 = Enables the Comparator interrupt 0 = Disables the Comparator interrupt							
bit 5-0	Unimpleme	nted: Read a	as '0'					
	Legend:							
	R = Readab	le bit	W = W	ritable bit	U = Unir	nplemented b	oit, read as '0)'
	- n = Value a	at POR reset	'1' = Bi	t is set	'0' = Bit i	is cleared	x = Bit is u	nknown

3.2.2.5 **PIR1** Register

bit 6

This register contains the individual flag bit for the comparator interrupt.

Note:	Interrupt flag bits get set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>). User
	software should ensure the appropriate
	interrupt flag bits are clear prior to enabling
	an interrupt.

REGISTER 3-5: PIR1 REGISTER (ADDRESS 0Ch)

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
_	CMIF	-		-	-	_	
bit7							bit0

```
bit 7
           Unimplemented: Read as '0'
```

CMIF: Comparator Interrupt Flag bit 1 = Comparator input has changed 0 = Comparator input has not changed

bit 5-0 Unimplemented: Read as '0'

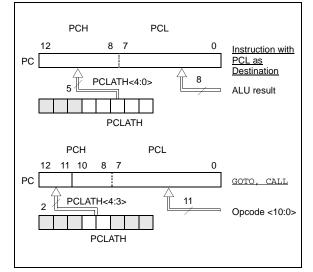
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.2.2.6 **PCON Register**

The PCON register contains flag bits to differentiate between a Power-on Reset, an external MCLR Reset, WDT Reset or a Brown-out Reset.

Note:	BOD is unknown on Power-on Reset. It							
	must then be set by the user and checked							
	on subsequent RESETS to see if BOD is							
	cleared, indicating a brown-out has							
	occurred. The BOD status bit is a "don't							
	care" and is not necessarily predictable if							
	the brown-out circuit is disabled (by							
	programming BODEN bit in the							
	configuration word).							

REGISTER 3-6: PCON REGISTER (ADDRESS 8Eh))


		•							
	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
	_		—	_	—	_	POR	BOD	
	bit7							bit0	
bit 7-2	Unimpleme	Unimplemented: Read as '0'							
bit 1	POR : Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)								
bit 0	BOD : Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any RESET, the PC is cleared. Figure 3-3 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 3-3: LOADING OF PC IN DIFFERENT SITUATIONS

3.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the Application Note, *"Implementing a Table Read"* (AN556).

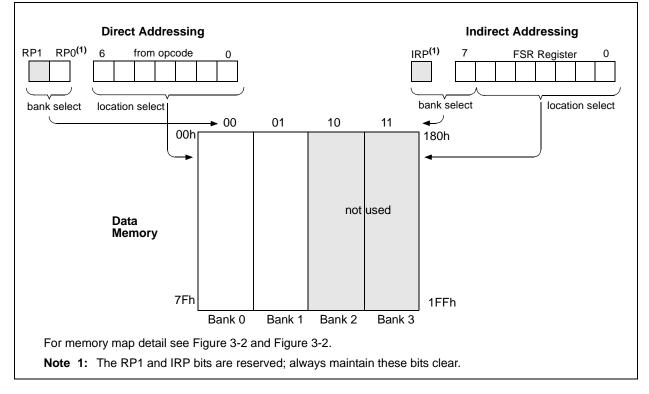
3.3.2 STACK

The PIC16C432 family has an 8 level deep x 13-bit wide hardware stack (Figure 3-1 and Figure 3-1). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RET-FIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth PUSH overwrites the value that was stored from the first PUSH. The tenth PUSH overwrites the second PUSH (and so on).

- Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instruction/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

3.4 Indirect Addressing, INDF and FSR Registers


The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a nooperation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 3-4. However, IRP is not used in the PIC16C432. A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 3-1.

EXAMPLE 3-1: INDIRECT ADDRESSING

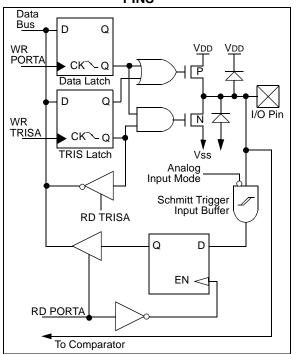
	movlw movwf	0x20 FSR	;initialize pointer :to RAM
	IIIO V W L	FBR	,00 10414
NEXT	clrf	INDF	clear INDF register;
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;no clear next
			;yes continue
CONTINUE:			

FIGURE 3-4: DIRECT/INDIRECT ADDRESSING PIC16C432

4.0 I/O PORTS

The PIC16C432 parts have two ports, PORTA and PORTB. Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

4.1 PORTA and TRISA Registers


PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Port RA4 is multiplexed with the T0CKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers), which can configure these pins as input or output.

A '1' in the TRISA register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

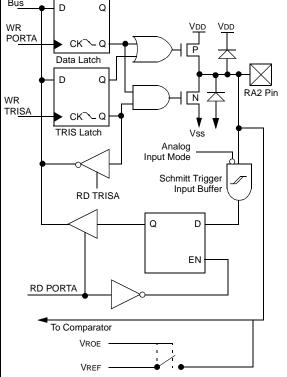
The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (Comparator Control Register) register and the VRCON (Voltage Reference Control Register) register. When selected as a comparator input, these pins will read as '0's.

FIGURE 4-1: BLOCK DIAGRAM OF RA0 PINS

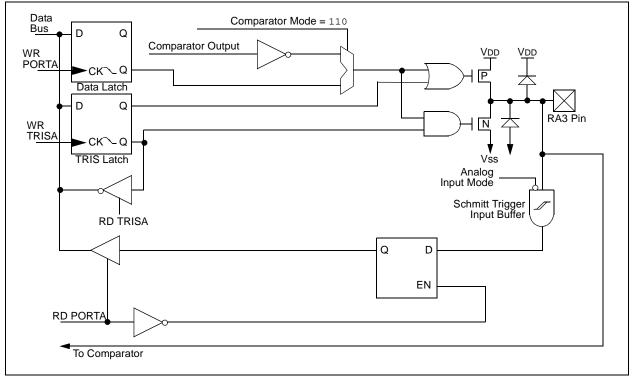
Note:	On RESET, the TRISA register is set to all
	inputs. The digital inputs are disabled and
	the comparator inputs are forced to
	ground, to reduce excess current con-
	sumption.

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.

The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very high impedance output. The user must configure TRISA<2> bit as an input and use high impedance loads.


In one of the comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

EXAMPLE 4-1: INITIALIZING PORTA


CLRF	PORTA	;Initialize PORTA by setting ;output data latches
MOVLW	0X07	;Turn comparators off and
MOVWF	CMCON	;enable pins for I/O
		;functions
BSF	STATUS,	;Select Bank1
	RP0	
MOVLW	0x1F	;Value used to initialize
		;data direction
MOVWF	TRISA	;Set RA<4:0> as inputs
		;TRISA<7:5> are always
		;read as '0'.

Note 1: BACT pin is an output and must be left open if unused.

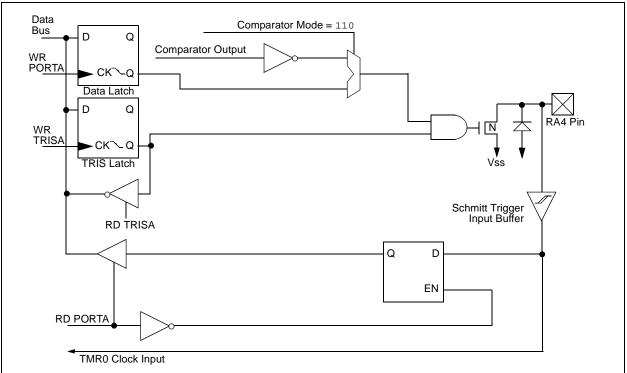

FIGURE 4-2: BLOCK DIAGRAM OF RA2 PIN

FIGURE 4-3: BLOCK DIAGRAM OF RA3 PIN

TABLE 4-1:PORTA FUNCTIONS

Name	Bit #	Buffer Type	Function
RA0/AN0	bit0	ST	Input/output or comparator input.
LINRX	bit1	ST	LIN receive pin.
RA2/AN2/VREF	bit2	ST	Input/output or comparator input or VREF output.
RA3/AN3	bit3	ST	Input/output or comparator input/output.
RA4/T0CKI	bit4	ST	Input/output or external clock input for TMR0 or comparator output. Output is open drain type.

Legend: ST = Schmitt Trigger input

TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

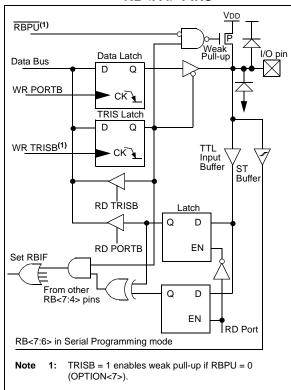
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on All Other RESETS
05h	PORTA	_	_	—	RA4	RA3	RA2	LINRX	RA0	x 0000	u 0000
85h	TRISA	-	_	_	TRISA4	TRISA3	TRISA2	TLINRX ⁽²⁾	TRISA0	1 1111	1 1111
1Fh	CMCON	C2OUT	C1OUT	_	_	CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR		VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: — = Unimplemented locations, read as '0', x = unknown, u = unchanged

Note 1: Shaded bits are not used by PORTA.

2: TLINRX must be set to '1' at all times.

4.2 PORTB and TRISB Registers


PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. A '1' in the TRISB register puts the corresponding output driver in a High Impedance mode. A '0' in the TRISB register puts the contents of the output latch on the selected pin(s).

Reading PORTB register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

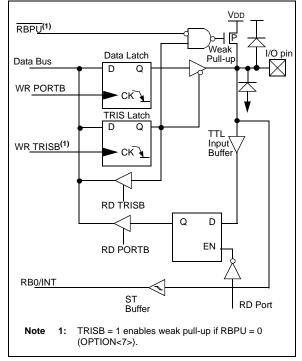
Each of the PORTB pins has a weak internal pull-up ($\approx 200 \ \mu A$ typical). A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on Power-on Reset.

Four of PORTB's pins, RB<7:4>, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from the interrupt-onchange comparison). The input pins of RB<7:4> are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB<7:4> are OR'ed together to generate the RBIF interrupt (flag latched in INTCON<0>).

FIGURE 4-5: BLOCK DIAGRAM OF RB<7:4> PINS

This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

This interrupt-on-mismatch feature, together with software configurable pull-ups on these four pins, allow easy interface to a key pad and make it possible for wake-up on key depression. (See AN552, "Implementing Wake-up on Key Strokes".)

Note:	If a change on the I/O pin should occur					
	when the read operation is being executed					
	(start of the Q2 cycle), then the RBIF inter-					
	rupt flag may not get set.					

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

Name	Bit #	Buffer Type	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock pin.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data pin.

TABLE 4-3: PORTB FUNCTIONS

Legend: ST = Schmitt Trigger, TTL = TTL input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 4-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on All Other RESETS
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: u = unchanged, x = unknown

Note 1: Shaded bits are not used by PORTB.

4.3 I/O Programming Considerations

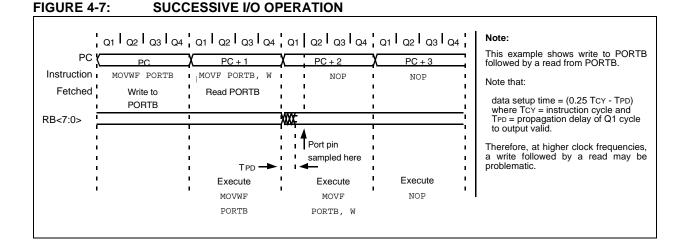
4.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (i.e., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (i.e., BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 4-2 shows the effect of two sequential read-modify-write instructions (i.e., ${\tt BCF}, {\tt BSF}, {\tt etc.})$ on an I/O port

A pin actively outputting a Low or High should not be driven from external devices at the same time, in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.


EXAMPLE 4-2: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

; Initial PORT settings:	PORTB<3:0>	PORTB<7:4> Inputs PORTB<3:0> Outputs				
; PORTB<7:6> have extern	hal pull-up and ar	e not connected				
; to other circuitry						
• •						
;	PORT latch	PORT pins				
		·				
,						
BCF PORTB, 7	; 01рр рррр	11рр рррр				
BCF PORTB, 6	;10pp pppp	11рр рррр				
BSF STATUS, RP0	;					
BCF TRISB, 7	; 10pp pppp	11рр рррр				
BCF TRISB, 6	; 10рр рррр	10рр рррр				

; **NOTE:** that the user may have expected the pin values to ; be 00pp pppp. The 2nd BCF caused RB7 to be latched as ; the pin value (High).

4.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 4-7). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction causes that file to be read into the CPU. Otherwise, the previous state of that pin may be read into the CPU, rather than the new state. When in doubt, it is better to separate these instructions with a NOP, or another instruction not accessing this I/O port.

5.0 LIN TRANSCEIVER

The PIC16C432 has an integrated LIN transceiver which allows the microcontroller to communicate via LIN. The LIN protocol is handled by the microcontroller. The conversion from 5V signal to LIN signals is handled by the transceiver.

5.1 The LIN Protocol

The LIN protocol is not described within this document. For further information regarding the LIN protocol, please refer to www.lin-subbus.org.

5.2 LIN Interfacing

The LIN protocol is implemented and programmed by the user, using the LINTX and LINRX bits, which are used to interface to the transceiver. The LIN firmware transmits by toggling the LINTX bit in the LININTF register and is read by reading the LINRX bit in the PORTA register. All aspects of the protocol are handled by software (i.e., bit-banged), where the transceiver is used as the physical interface to the LIN network.

For LIN software implementation, please refer to Microchip's website (www.microchip.com).

Note: The LINTX is bit 2 of the LININTF register.

If the LINTX bit is left cleared, no other nodes on the network will be able to communicate on the LIN for this is the dominate state for the protocol. The transceiver can be powered down by clearing the LINVDD bit in the LININTF register. This can be useful to reduce current consumption but does not allow the microcontroller to wake-up on LIN activity because the transceiver will be disabled. It is recommended that the firmware verify each bit transmitted, by comparing the LINTX and LINRX bits, to ensure no bus contention or hardware failure has occurred. The LINTX bit has no associated TRIS bit and is always an output. The LINRX bit has an associated TRIS bit, TLINRX, in the TRISA register.

Note: TLINRX, bit 1 of TRISA register, must be set to '1' at all times.

5.3 LIN Hardware Interface

Figure 6-1 shows how to implement a hardware LIN interface in a master configuration and Figure 6-2 in a slave configuration using the PIC16C432. Figure 6-3 shows how to implement the hardware for a master configuration using BACT pin to generate a wake-up interrupt using RB0. The transceiver has an internal series resistor and diode, as defined in the LIN 1.2 specification, connecting VBAT and LIN.

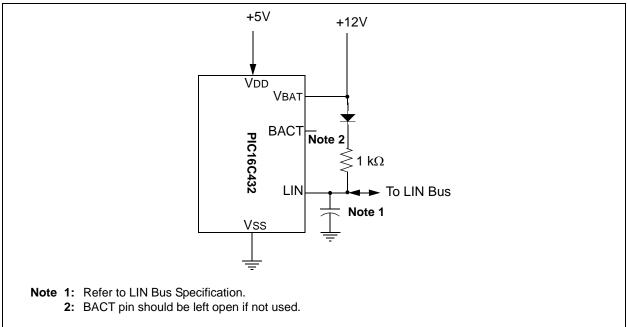
Note: No resistor is required between VBAT pin and 12V supply and for slave configuration, no resistor is required between VBAT and LIN.

5.4 Thermal Shutdown

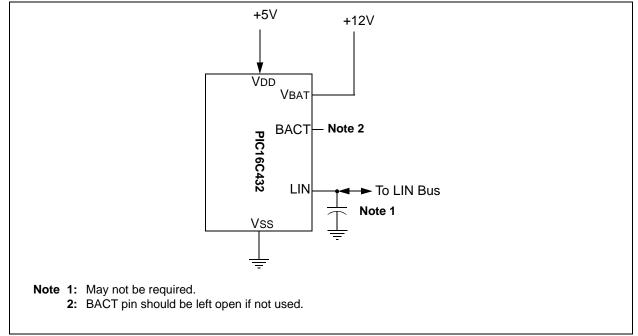
In thermal shutdown, the LIN output is disabled instantaneously. The output transistor is turned off, regardless of the input level at pin LINTX bit and only a limited current can flow into the receiver connected to the LIN pin.

5.5 Wake-up From SLEEP Upon Bus Activity

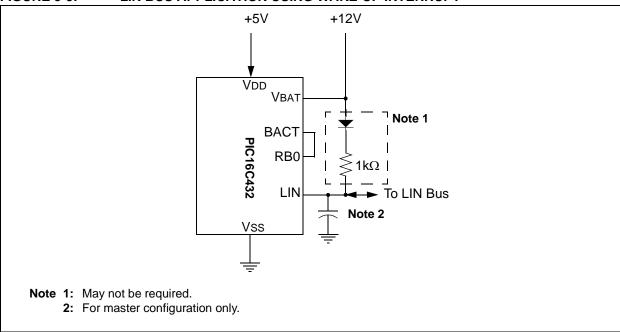
The PIC16C432 can wake-up from SLEEP upon bus activity in two ways:

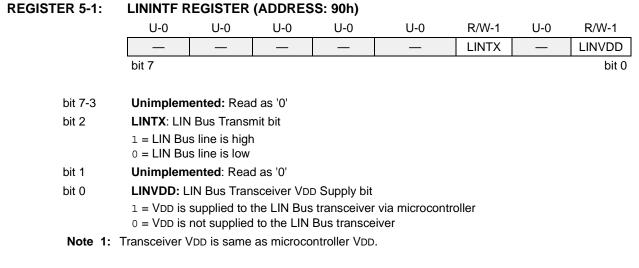

- 1. With the use of the comparators.
- Connecting BACT to one of PORTB<0,4:7> pins.

In case the comparators are used to wake-up the device upon bus activity, a reference to the LIN signal has to be supplied. This is usually VDD/2. The reference can either be an external reference or the internal voltage reference. Once the device is in SLEEP mode, the comparator interrupt will wake-up the device. On RESET, LINRX is configured as an analog comparator input (Section 8.1 of Data Sheet) which can be used to generate an interrupt to wake-up the device from SLEEP on bus activity. The LINRX bit will not receive data from the bus configured as an analog input, therefore, after wake-up from comparator interrupt or RESET, LINRX must be configured as a digital input to read the bus.


The BACT output is a CMOS-levels representation of the LIN pin. This signal can be routed to one of the PORTB<0,4:7> pins. The RB0/INT external interrupt or PORTB<4:7> interrupt-on-change wakes up the device from SLEEP. Any one of the five PORTB pins can be used for wake-up where PORTB<0> offers multiple configuration options (Section 10.5.1 of Data Sheet) and PORTB<4:7> are interrupt-on-change (Section 10.5.3 of Data Sheet).

Note: BACT pin is an output and must be left open if unused.




FIGURE 5-2: TYPICAL LIN BUS SLAVE APPLICATION

PIC16C432

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TABLE 5-1: SUMMARY OF REGISTERS ASSOCIATED WITH LIN TRANSCEIVER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
05h	PORTA	_	_	-	RA4	RA3	RA2	LINRX	RA0	x 0000	u 0000
85h	TRISA	-	_	—	TRISA4	TRISA3	TRISA2	TLINRX ⁽²⁾	TRISA0	1 1111	1 1111
90h	LININTF	—			_		LINTX		LINVDD	1-1	1-1

Legend: x = unknown, u = unchanged, - = Unimplemented locations read as '0'.

Note 1: Shaded bits are not used by LIN transceiver

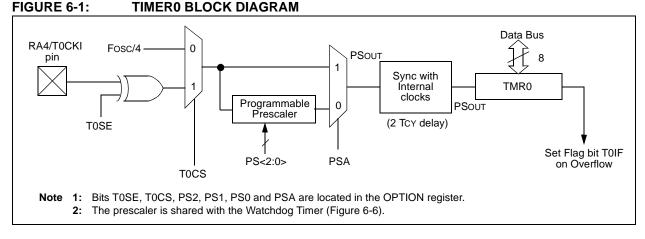
2: TLINRX must be set to '1' at all times.

6.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module.


Timer mode is selected by clearing the TOCS bit (OPTION<5>). In Timer mode, the TMR0 will increment every instruction cycle (without prescaler). If Timer0 is written, the increment is inhibited for the following two cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to TMR0.

Counter mode is selected by setting the T0CS bit. In this mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION<4>). Clearing the TOSE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.

The prescaler is shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

6.1 Timer0 Interrupt

Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module Interrupt Service Routine, before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from SLEEP, since the timer is shut-off during SLEEP. See Figure 6-4 for Timer0 interrupt timing.

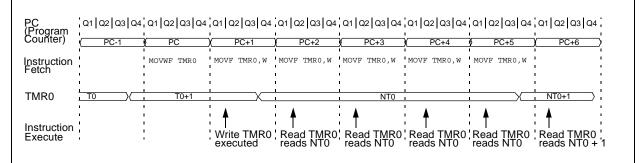
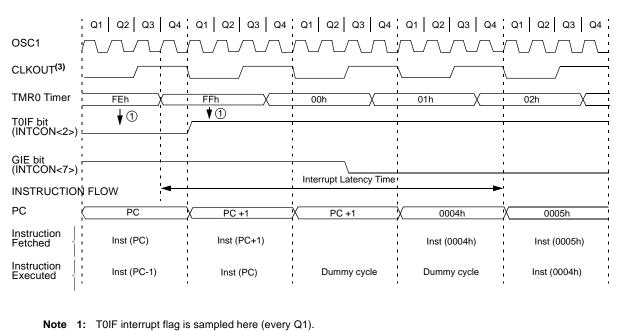


FIGURE 6-2: TIMER0 (TMR0) TIMING: INTERNAL CLOCK/NO PRESCALER


W
" I I
NT0+2 X
≜
0

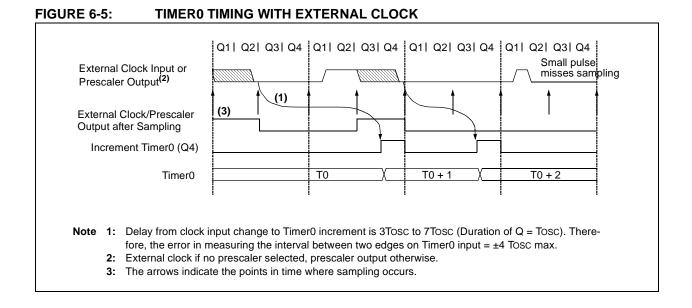
PIC16C432

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

FIGURE 6-4: TIMER0 INTERRUPT TIMING

- 2: Interrupt latency = 3Tcy, where Tcy = instruction cycle time.
- 3: CLKOUT is available only in RC Oscillator mode.

6.2 Using Timer0 with External Clock

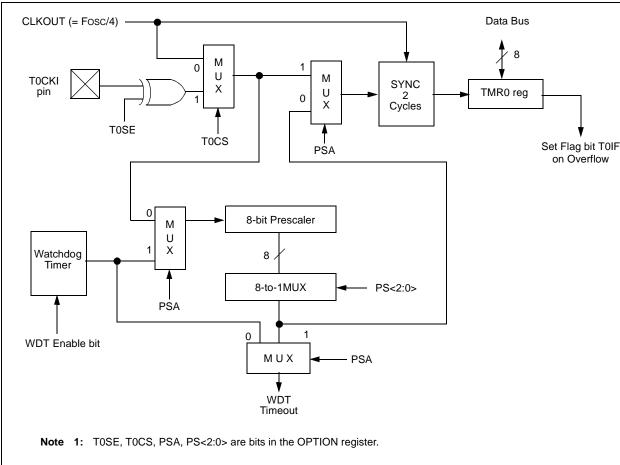

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns), divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the TMR0 is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.



6.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 6-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available, which is mutually exclusive between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (i.e., CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to WDT.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

1.BCF	STATUS, RPO	;Skip if already in ; Bank 0
2.CLRWDT 3.CLRF	TMR0	;Clear WDT ;Clear TMR0 & Prescaler
4.BSF	STATUS, RPO	;Bank 1
5.MOVLW	'00101111'b	;These 3 lines (5, 6, 7)
6.MOVWF	OPTION	; are required only ; if desired PS<2:0>
		; are
7.CLRWDT		; 000 or 001
8.MOVLW	'00101xxx'b	;Set Postscaler to
9.MOVWF	OPTION	; desired WDT rate
10.BCF	STATUS, RPO	;Return to Bank 0

To change prescaler from the WDT to the TMR0 module, use the sequence shown in Example 6-2. This precaution must be taken, even if the WDT is disabled.

EXAMPLE 6-2:

CHANGING PRESCALER (WDT→TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
BSF	STATUS, RPO	
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source
MOVWF	OPTION_REG	
BCF	STATUS, RPO	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on All Other RESETS
01h	TMR0	Timer0 ı	imer0 module register							xxxx xxxx	uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_			TRISA4	TRISA3	TRISA2	TLINRX ⁽²⁾	TRISA0	1 1111	1 1111

Legend: — = Unimplemented locations, read as '0', x = unknown, u = unchanged

Note 1: Shaded bits are not used by TMR0 module.

2: TLINRX must be set to '1' at all times.

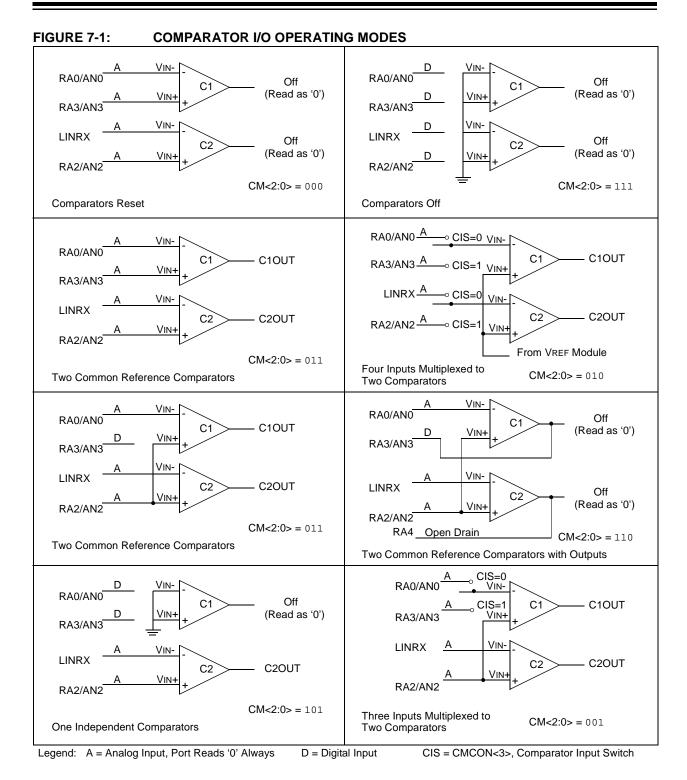
NOTES:

7.0 COMPARATOR MODULE

The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with the RA0 through RA3 pins. The on-chip voltage reference (Section 8.0) can also be an input to the comparators.

The CMCON register, shown in Register 7-1, controls the comparator input and output multiplexers. A block diagram of the comparator is shown in Figure 7-1.

REGISTER 7-1:	CMCON REGISTER (ADDRESS 1Fh)							
	R-0	R-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	C2OUT	C10UT		_	CIS	CM2	CM1	CM0
	bit7							bit0
bit 7	1 = C2 VIN+	C2OUT : Comparator 2 Output bit 1 = C2 VIN+ > C2 VIN- 0 = C2 VIN+ < C2 VIN-						
bit 6	C1OUT : Comparator 1 Output bit 1 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ < C1 VIN-							
bit 5-4	Unimpleme	Unimplemented: Read as '0'						
bit 3	CIS: Comparator Input Switch bit							
		2:0> = 001: connects to F connects to F						
	When CM<2:0> = 010: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA0 C2 VIN- connects to LINRX							
bit 2-0	CM<2:0> : C (See Figure	Comparator M 7-1)	ode bits					
	Legend:							
	R = Readat	ole bit	W = Writa	able bit	U = Unimp	lemented bit	, read as '0'	
	- n = Value	at POR reset	'1' = Bit is	s set	'0' = Bit is		k = Bit is unk	known


7.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 7-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 12-1.

Note: Comparator interrupts should be disabled during a Comparator mode change, otherwise a false interrupt may occur.

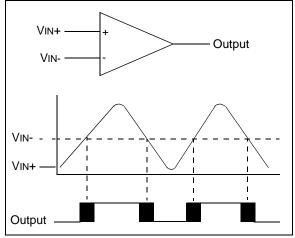
© 2000-2013 Microchip Technology Inc.

PIC16C432

The code example in Example 7-1 depicts the steps required to configure the comparator module. RA3 and RA4 are configured as digital output. RA0 and RA1 are configured as the V- inputs and RA2 as the V+ input to both comparators.

EXAMPLE 7-1:	INITIALIZING
	COMPARATOR MODULE

FLAG_REG	5 EQU	0X20
CLRF	FLAG_REG	;Init flag register
CLRF	PORTA	;Init PORTA
MOVF	CMCON,W	;Move comparator contents to W
ANDLW	0xC0	;Mask comparator bits
IORWF	FLAG_REG,F	;Store bits in flag register
MOVLW	0x03	;Init comparator mode
MOVWF	CMCON	;CM<2:0> = 011
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x07	;Initialize data direction
MOVWF	TRISA	;Set RA<2:0> as inputs
		;RA<4:3> as outputs
		;TRISA<7:5> always read `0'
BCF	STATUS, RPO	;Select Bank 0
CALL	DELAY 10	;10ms delay
MOVF	CMCON, F	;Read CMCONtoend change condition
BCF	PIR1,CMIF	;Clear pending interrupts
BSF	STATUS, RPO	;Select Bank 1
BSF	PIE1,CMIE	;Enable comparator interrupts
BCF	STATUS, RPO	;Select Bank 0
BSF	INTCON, PEIE	;Enable peripheral interrupts
BSF	INTCON,GIE	;Global interrupt enable


7.2 Comparator Operation

A single comparator is shown in Figure 7-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 7-2 represent the uncertainty due to input offsets and response time.

7.3 Comparator Reference

An external or internal reference signal may be used, depending on the Comparator Operating mode. The analog signal that is present at VIN- is compared to the signal at VIN+, and the digital output of the comparator is adjusted accordingly (Figure 7-2).

FIGURE 7-2: SINGLE COMPARATOR

7.3.1 EXTERNAL REFERENCE SIGNAL

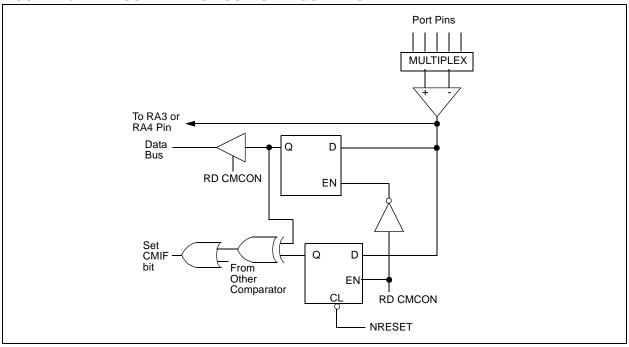
When external voltage references are used, the comparator module can be configured to have the comparators operate from the same, or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between VSs and VDD and can be applied to either pin of the comparator(s).

7.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference for the comparators. Section 8.0, Voltage Reference Module, contains a detailed description of the Voltage Reference Module that provides this signal. The internal reference signal is used when the comparators are in mode CM<2:0> = 010 (Figure 7-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

7.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs, otherwise the maximum delay of the comparators should be used (Table 12.1).


7.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When the CM<2:0> = 110, multiplexors in the output path of the RA3 and RA4 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 7-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA3 and RA4 pins while in this mode.

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

7.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that has occurred. The CMIF bit, PIR1<6>, is the comparator interrupt flag. The CMIF bit must be reset by clearing '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	If a change in the CMCON register							
	(C1OUT or C2OUT) should occur when a							
	read operation is being executed (start of							
	the Q2 cycle), then the CMIF (PIR1<6>)							
	interrupt flag may not get set.							

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

7.7 Comparator Operation During SLEEP

When a comparator is active and the device is placed in SLEEP mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from SLEEP mode when enabled. While the comparator is powered up, higher SLEEP currents than shown in the power-down current specification will occur. Each comparator that is operational will consume additional current as shown in the comparator specifications. To minimize power consumption while in SLEEP mode, turn off the comparators, CM<2:0> = 111, before entering SLEEP. If the device wakes up from SLEEP, the contents of the CMCON register are not affected.

7.8 Effects of a RESET

A device RESET forces the CMCON register to its RESET state. This forces the comparator module to be in the Comparator RESET mode, CM<2:0> = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at RESET time. The comparators will be powered down during the RESET interval.

7.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 7-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latchup may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

© 2000-2013 Microchip Technology Inc.

TABLE 7-1:	REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on All Other RESETS
1Fh	CMCON	C2OUT	C10UT		_	CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	CMIF	_	—	—	_	—	—	-0	-0
8Ch	PIE1	_	CMIE		_	_		—	_	-0	-0
85h	TRISA	_	_		TRISA4	TRISA3	TRISA2	TLINRX ⁽¹⁾	TRISA0	1 1111	1 1111
Legend: Note 1:	5 1 2 2 3										

8.0 VOLTAGE REFERENCE MODULE

REGISTER 8-1:

The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Register 8-1. The block diagram is given in Figure 8-1.

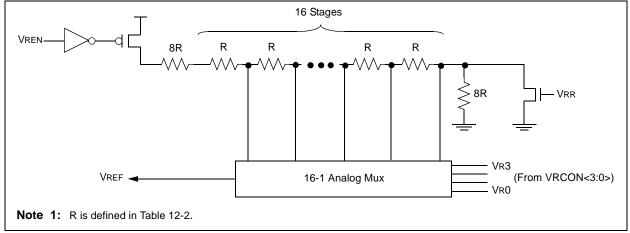
8.1 Configuring the Voltage Reference

The Voltage Reference can output 16 distinct voltage levels for each range.

The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 1: VREF = (VR<3:0>/24) x VDD

if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD


The setting time of the Voltage Reference must be considered when changing the VREF output (Table 12.1). Example 8-1 shows an example of how to configure the Voltage Reference for an output voltage of 1.25V with VDD = 5.0V.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 VREN VROE VRR Vr3 VR2 VR1 V_{R0} bit7 bit0 bit 7 **VREN:** VREF Enable bit 1 = VREF circuit powered on 0 = VREF circuit powered down, no IDD drain bit 6 **VROE:** VREF Output Enable bit 1 = VREF is output on RA2 pin 0 = VREF is disconnected from RA2 pin bit 5 VRR: VREF Range Selection bit 1 = Low Range 0 = High Range bit 4 Unimplemented: Read as '0' bit 3-0 **VR<3:0>:** VREF Value Selection $0 \le VR$ [3:0] ≤ 15 when VRR = 1: VREF = (VR<3:0>/ 24) * VDD when VRR = 0: VREF = 1/4 * VDD + (VR < 3:0 > / 32) * VDD

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 8-1: VOLTAGE REFERENCE BLOCK DIAGRAM

VRCON REGISTER (ADDRESS 9Fh)

© 2000-2013 Microchip Technology Inc.

EXAMPLE 8-1: VOLTAGE REFERENCE CONFIGURATION

MOVLW	0x02	; 4 Inputs Muxed
MOVWF	CMCON	; to 2 comps.
BSF	STATUS, RPO	; go to Bank 1
MOVLW	0x07	; RA3-RA0 are
MOVWF	TRISA	; outputs
MOVLW	0xA6	; enable VREF
MOVWF	VRCON	; low range
		; set VR<3:0>=6
BCF	STATUS, RPO	; go to Bank O
CALL	DELAY10	; 10µs delay

8.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 8-1) keep VREF from approaching VSS or VDD. The Voltage Reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The absolute accuracy of the Voltage Reference can be found in Table 12-2.

8.3 Operation During SLEEP

When the device wakes up from SLEEP through an interrupt or a Watchdog Timer timeout, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the Voltage Reference should be disabled.

8.4 Effects of a RESET

A device RESET disables the Voltage Reference by clearing bit VREN (VRCON<7>). This RESET also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

8.5 Connection Considerations

The Voltage Reference Module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the Voltage Reference output onto the RA2 pin, with an input signal present, will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the Voltage Reference output for external connections to VREF. Figure 8-2 shows an example buffering technique.

Note 1: R is dependent upon the Voltage Reference Configuration VRCON<3:0> and VRCON<5>.

FIGURE 8-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 8-2: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR/BOD	Value On All Other RESETS
9Fh	VRCON	VREN	VROE	VRR		VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C1OUT	_	_	CIS	CM2	CM1	CM0	00 0000	00 0000
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TLINRX ⁽¹⁾	TRISA0	1 1111	1 1111

Legend: - = Unimplemented, read as '0'

Note 1: TLINRX must be set to '1' at all times.

9.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real-time applications are what sets a microcontroller apart from other processors. The PIC16C432 device has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. OSC Selection
- 2. RESET
 - Power-on Reset (POR) Power-up Timer (PWRT) Oscillator Start-Up Timer (OST) Brown-out Reset (BOD)
- 3. Interrupts
- 4. Watchdog Timer (WDT)
- 5. SLEEP
- 6. Code Protection
- 7. ID Locations
- 8. In-circuit Serial Programming

The PIC16C432 has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, and is designed to keep the part in RESET while the power supply stabilizes. There is also circuitry to reset the device if a brown-out occurs, which provides at least a 72 ms RESET. With these three functions on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

9.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

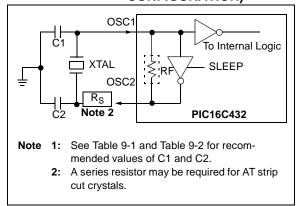
REGISTER 9-1: CONFIGURATION WORD

	CP1	CP0 ⁽²⁾	CP1	CP0 ⁽²⁾	CP1	CP0 ⁽²⁾	_	BODEN ⁽¹⁾	CP1	CP0 ⁽²⁾	PWRTE ⁽¹⁾	WDTE	F0SC1	F0SC0
	bit 13	I	1					11			1			bit 0
t 13-8	CP1:C	P0 Pairs	: Code p	protection	n bit pair	. _S (2)								
t 5 -4	11 = F 10 = 0 01 = 0	Code protection for 2K program memory bits 11 = Program memory code protection off 10 = 0400h-07FFh code protected 01 = 0200h-07FFh code protected 00 = 0000h-07FFh code protected												
t 7	Unimp	lemente	ed: Read	d as '1'										
6	BODEN: Brown-out Reset Enable bit ⁽¹⁾ 1 = BOD enabled 0 = BOD disabled													
3	1 = PV	E: Powe /RT disa /RT enal	bled	ier Enabl	e bit (1)									
2	WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled													
t 1-0	FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator													
		PW	RTE. En	sure the	Power-	up Timei	is enat	bles Power- bled anytime same value	Brown	-out Res	et in enable	ed.		

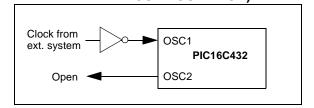
Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES


The PIC16C432 can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor


9.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 9-1). The PIC16C432 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 9-2).

FIGURE 9-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

FIGURE 9-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 9-1: CERAMIC RESONATORS, PIC16C432

Ranges Tested:									
Mode Freq OSC1 OSC2									
XT	455 kHz	68 - 100 pF	68 - 100 pF						
	2.0 MHz	15 - 68 pF	15 - 68 pF						
	4.0 MHz	15 - 68 pF	15 - 68 pF						
HS	8.0 MHz	10 - 68 pF	10 - 68 pF						
	16.0 MHz	10 - 22 pF	10 - 22 pF						
These val	These values are for design guidance only. See								

notes at bottom of page.

TABLE 9-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR, PIC16C432

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF
These value	s are for d	esian auidance	only See

These values are for design guidance only. See notes at bottom of page.

- **Note 1:** Recommended values of C1 and C2 are indentical to the ranges tested table.
 - 2: Higher capacitance increases the stability of oscillator, but also increases the startup time.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 4: Rs may be required in HS mode, as well as XT mode, to avoid over driving crystals with low drive level specification.

9.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used, or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 9-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 9-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

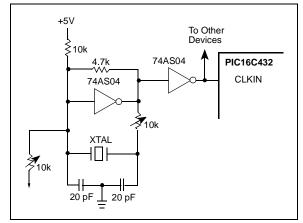
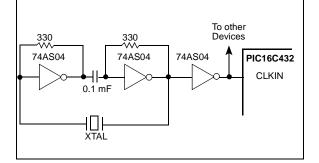
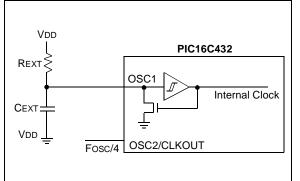



Figure 9-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 9-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

9.2.4 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 9-5 shows how the R/C combination is connected to the PIC16C432. For REXT values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high REXT values (i.e., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, it is recommended to keep REXT between 3 k Ω and 100 k Ω .


Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance, or package lead frame capacitance.

The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

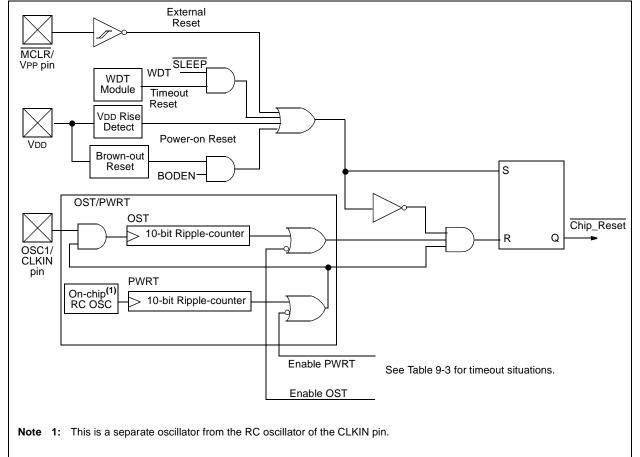
See Section 2.0 for variation of oscillator frequency due to VDD for given REXT/CEXT values, as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin and can be used for test purposes, or to synchronize other logic (see Figure 4-2 for waveform).

FIGURE 9-5: RC OSCILLATOR MODE

9.3 RESET

The PIC16C432 differentiates between various kinds of RESET:


- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) WDT Reset (normal operation)
- e) WDT wake-up (SLEEP)
- f) Brown-out Reset (BOD)

Some registers are not affected in any RESET condition. Their status is unknown on POR and unchanged in any other RESET. Most other registers are RESET to a "RESET state" on Power-on Reset, MCLR Reset, WDT Reset and MCLR Reset during SLEEP. They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different RESET situations, as indicated in Table 9-4. These bits are used in software to determine the nature of the RESET. See Table 9-6 for a full description of RESET states of all registers.

A simplified block diagram of the On-chip Reset Circuit is shown in Figure 9-6.

The $\overline{\text{MCLR}}$ Reset path has a noise filter to detect and ignore small pulses. See Table 12-6 for pulse width specification.

9.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOD)

9.4.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in RESET until VDD has reached a high enough level for proper_operation. To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See electrical specifications for details.

The POR circuit does not produce an internal RESET when VDD declines.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"*.

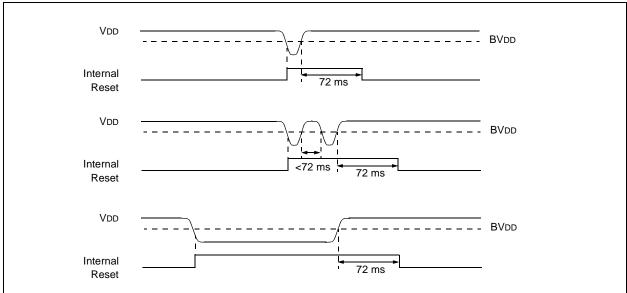
9.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms (nominal) timeout on power-up only, from POR or Brown-out Reset. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, PWRTE, can disable (if set), or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should always be enabled when Brown-out Reset is enabled.

The Power-Up time delay will vary from chip-to-chip and due to VDD, temperature and process variation. See DC parameters for details.

9.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.


The OST timeout is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

9.4.4 BROWN-OUT RESET (BOD)

The PIC16C432 has an on-chip Brown-out Reset circuitry. A configuration bit, BOREN, can disable (if clear/ programmed), or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (refer to BVDD parameter D005) for greater than parameter (TBOR) in Table 12-6, the brown-out situation will reset the chip. A RESET won't occur if VDD falls below 4.0V for less than parameter (TBOR).

On any RESET (Power-on, Brown-out, Watchdog, etc.), the chip will remain in RESET until VDD rises above BVDD. The Power-up Timer will then be invoked and will keep the chip in RESET an additional 72 ms.

If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms RESET. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 9-7 shows typical Brown-out situations.

FIGURE 9-7: BROWN-OUT SITUATIONS

9.4.5 TIMEOUT SEQUENCE

On power-up, the timeout sequence is as follows: First PWRT timeout is invoked after POR has expired, then OST is activated. The total timeout will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in RC mode with <u>PWRTE</u> bit erased (PWRT disabled), there will be no timeout at all. Figure 9-8, Figure 9-8 and Figure 9-9 depict timeout sequences.

Since the timeouts occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the timeouts will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 9-8). This is useful for testing purposes or to synchronize more than one PIC[®] device operating in parallel.

Table 9-5 shows the RESET conditions for some special registers, while Table 9-6 shows the RESET conditions for all the registers.

9.4.6 POWER CONTROL (PCON)/STATUS REGISTER

The power control/status register, PCON (address 8Eh), has two bits.

Bit0 is $\overline{\text{BOR}}$ (Brown-out). $\overline{\text{BOR}}$ is unknown on Poweron Reset. It must then be set by the user and checked on subsequent RESETS to see if $\overline{\text{BOR}} = 0$, indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by setting BODEN bit = 0 in the Configuration word).

Bit1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent RESET, if POR is '0', it will indicate that a Poweron Reset must have occurred (VDD may have gone too low).

Oscillator Configuration	Powe	er-up	Brown-out Reset	Wake-up from SLEEP	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Brown-out Reset		
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
RC	72 ms	_	72 ms	—	

TABLE 9-3: TIMEOUT IN VARIOUS SITUATIONS

POR	BOR	то	PD			
0	Х	1	1	Power-on Reset		
0	х	0	Х	Illegal, TO is set on POR		
0	х	Х	0	Illegal, PD is set on POR		
1	0	Х	Х	Brown-out Reset		
1	1	0	u	WDT Reset		
1	1	0	0	WDT Wake-up		
1	1	u	u	MCLR Reset during normal operation		
1	1	1	0	MCLR Reset during SLEEP		
Legend:	Legend: x = unknown, u = unchanged					

TABLE 9-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

S PCON
r Register
xx0x
uuuu
uuuu
uuuu
uuuu
uuu0
uuuu
1

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

Register	Address	Power-on Reset	MCLR Reset during Normal Operation MCLR Reset during SLEEP WDT Reset Brown-out Reset ⁽¹⁾	Wake-up from SLEEP through Interrupt Wake-up from SLEEP through WDT Timeout
W	—	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	00h	_	-	-
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu	սսսս սսսս
CMCON	1Fh	00 0000	00 0000	uu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uqqq ⁽²⁾
PIR1	0Ch	-0	-0	-q(2,5)
OPTION	81h	1111 1111	1111 1111	uuuu uuuu
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	սսսս սսսս
PIE1	8Ch	-0	-0	-u
PCON	8Eh	0x	uq ^(1,6)	uu
LININTF	90h	111	1-1	1-1
VRCON	9Fh	000- 0000	000- 0000	uuu- uuuu

TABLE 9-6:INITIALIZATION CONDITION FOR REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition **Note 1:** If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

- **3:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
- 4: See Table 9-5 for RESET value for specific conditions.
- **5:** If wake-up was due to comparator input changing , then bit 6 = 1. All other interrupts generating a wake-up will cause bit 6 = u.
- 6: If RESET was due to brown-out, then PCON bit0 = 0. All other RESETS will cause bit0 = u.

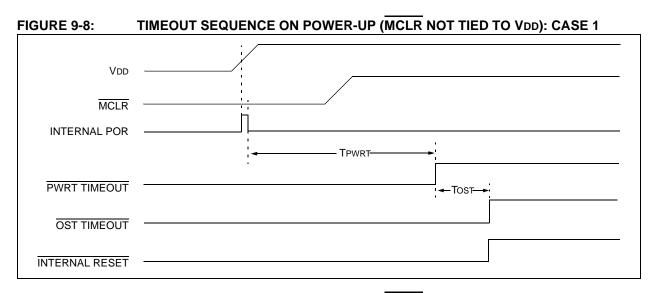


FIGURE 9-9: TIMEOUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

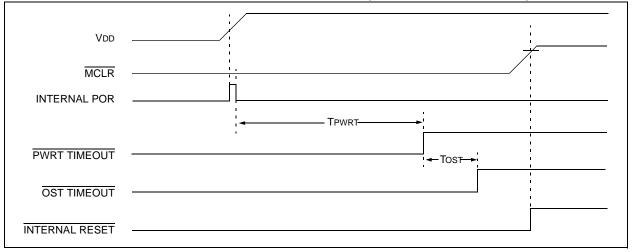
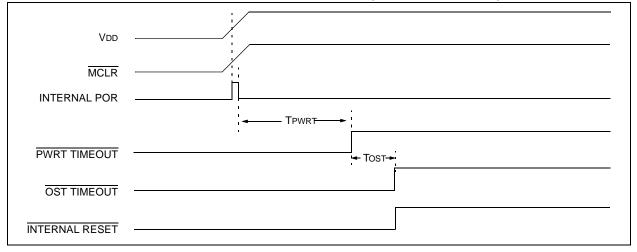
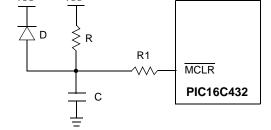




FIGURE 9-10: TIMEOUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

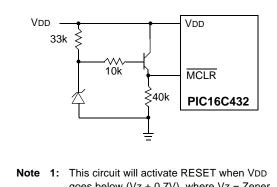

© 2000-2013 Microchip Technology Inc.

FIGURE 9-11: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

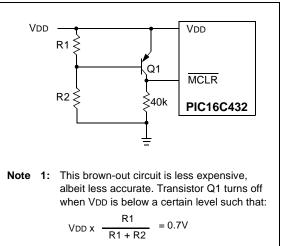

- Note 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
 - 3: $R1 = 100 \Omega$ to 1 k Ω will limit any current flowing into MCLR from external capacitor C, in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD), or Electrical Overstress (EOS).

FIGURE 9-12: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

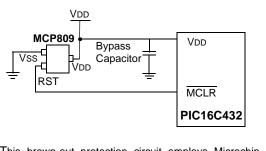

- goes below (Vz + 0.7V), where Vz = Zener voltage.
 - **2:** Internal Brown-out Reset circuitry should be disabled when using this circuit.

FIGURE 9-13: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

- **2:** Internal brown-out detection should be disabled when using this circuit.
- **3:** Resistors should be adjusted for the characteristics of the transistor.

FIGURE 9-14: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 3

This brown-out protection circuit employs Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX families of supervisors provide push-pull and open collector outputs with both high and low active RESET pins. There are 7 different trip point selections to accommodate 5V and 3V systems.

9.5 Interrupts

The PIC16C432 has 4 sources of interrupt:

- External interrupt RB0/INT
- TMR0 overflow interrupt
- PORTB change interrupts (pins RB<7:4>)
- Comparator interrupt
- LIN Bus wake-up can be wired to RB0, or comparator

The interrupt control register (INTCON) and the Peripheral Interrupt Register (PIR1) record individual interrupt requests in flag bits. INTCON and PIR1 have individual and global interrupt enable bits.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts, or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. GIE is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits interrupt routine, as well as sets the GIE bit, which reenables all unmasked interrupts.

The INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

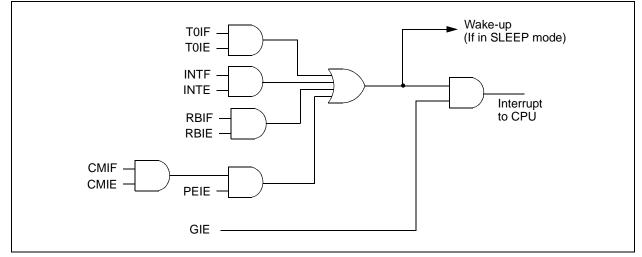

The peripheral interrupt flag is contained in the special register PIR1. The corresponding interrupt enable bit is contained in special registers PIE1.

FIGURE 9-15: INTERRUPT LOGIC

When an interrupt is responded to, the GIE is cleared to disable any further interrupt, the return address is pushed into the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid RB0/INT recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends on when the interrupt event occurs (Figure 9-16). The latency is the same for one or two cycle instructions. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

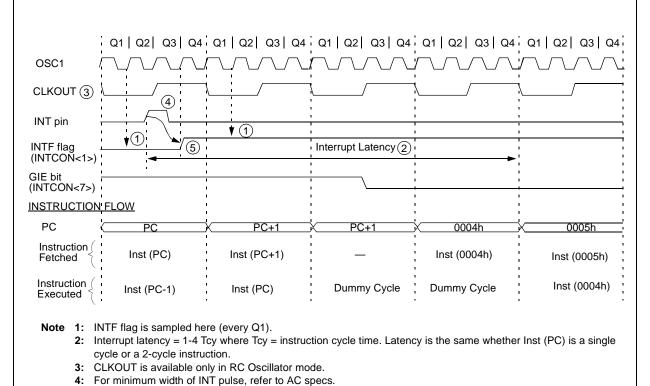
- **Note 1:** Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The CPU will execute a NOP in the cycle immediately following the instruction which clears the GIE bit. The interrupts which were ignored are still pending to be serviced when the GIE bit is set again.

9.5.1 RB0/INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered; either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the Interrupt Service Routine before reenabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.8 for details on SLEEP and Figure 9-18 for timing of wakeup from SLEEP through RB0/INT interrupt.

9.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 6.0.


9.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 4.2).

Note:	If a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then the RBIF inter-
	rupt flag may not get set.

9.5.4 COMPARATOR INTERRUPT

See Section 7.6 for complete description of comparator interrupts.

FIGURE 9-16: INT PIN INTERRUPT TIMING

For minimum width of NYT pulse, refer to AC specs.5: INTF is enabled to be set any time during the Q4-Q1 cycles.

9.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (i.e., W register and STATUS register). This will have to be implemented in software.

Example 9-7 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x70 in Bank 0 and it must also be defined at 0xF0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 9-7:

- Stores the W register
- Stores the STATUS register in Bank 0
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- Restores the W register

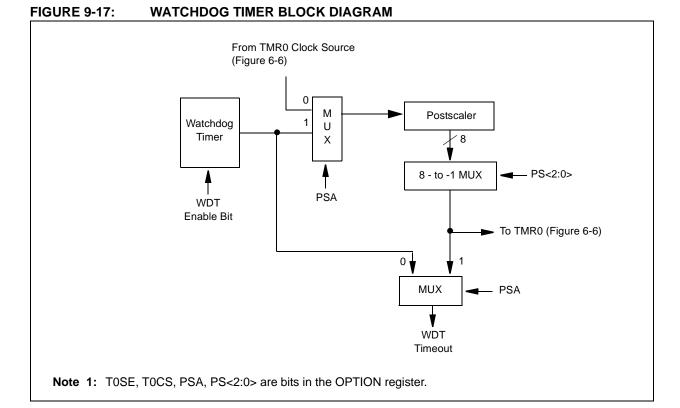
EXAMPLE 9-7: SAVING THE STATUS AND W REGISTERS IN RAM

MOVW F	W_TEMP	;copy W to temp register, ;could be in either bank
SWAP F	STATUS,W	;swap status to be saved into W
BCF	STATUS, RPO	;change to bank 0 regard- less ;of current bank
MOVW F :	STATUS_TEMP	;save status to bank 0 ;register
: :	(ISR)	
SWAP F	STATUS_TEMP ,W	;swap STATUS_TEMP regis- ter ;into W, sets bank to original ;state
MOVW F	STATUS	;move W into STATUS regis- ter
SWAP F	W_TEMP,F	;swap W_TEMP
SWAP F	W_TEMP,W	;swap W_TEMP into W

9.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run even if the clock on the OSC1 and OSC2 pins of the device have been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT timeout generates a device RESET. If the device is in SLEEP mode, a WDT timeout causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 9.1).

9.7.1 WDT PERIOD


The WDT has a nominal timeout period of 18 ms, (with no prescaler). The timeout periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer timeout periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control, by writing to the OPTION register. Thus, timeout periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer timeout.

9.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler), it may take several seconds before a WDT timeout occurs.

TABLE 9-8: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits		BOREN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: - = Unimplemented location, read as "0", + = Reserved for future use

Note 1: Shaded cells are not used by the Watchdog Timer.

9.8 Power-down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit in the STATUS register is cleared, the TO bit is set and the oscillator driver is turned off. The I/O ports maintain the status they had before SLEEP was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or VSs, with no external circuitry drawing current from the I/O pin, and the comparators and VREF should be disabled. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSs for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

Note:	It should be noted that a RESET generated
	by a WDT timeout does not drive MCLR
	pin low.

9.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, RB Port change, or the Peripheral Interrupt (Comparator).
- 4. LIN activity.

The first event will cause a device RESET. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. PD bit, which is set on power-up is cleared when SLEEP is invoked. TO bit is cleared if WDT wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the SLEEP instruction of the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from SLEEP. The SLEEP instruction is completely executed.

The WDT is cleared when the device wakes up from SLEEP, regardless of the source of wake-up.

WAKE-UP FROM SLEEP THROUGH INTERRUPT **FIGURE 9-18:**

OSC1	` Q1 Q2 Q3 Q4 '∕∕	a1 a2 a3 a4	Q1		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	a1 a2 a3 a4	Q1 Q2 Q3 Q4
CLKOUT(4)			, , ,	Tost(2)		+	·	
INT pin INTF flag (INTCON<1>)				· · ·		Interrupt Latency	· · ·	
GIE bit (INTCON<7>)		 	Processor in				· P	
INSTRUCTION	FLOW					1		
PC	Х РС	PC+1	X PC+	+2 X	PC+2	X PC + 2	X 0004h	<u>χ 0005h</u>
Instruction _	Inst(PC) = SLEEP	Inst(PC + 1)	1	1 1 1	Inst(PC + 2)	1 1 1	Inst(0004h)	Inst(0005h)
Instruction Executed	Inst(PC - 1)	SLEEP	1 1 1	1 1 1	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
2: TOST =	or LP Oscillator mode 1024Tosc (drawing no 1' assumed. In this cas	ot to scale). This del				$= -10^{\circ}$ execution will	continue in-line	

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

9.9 **Code Protection**

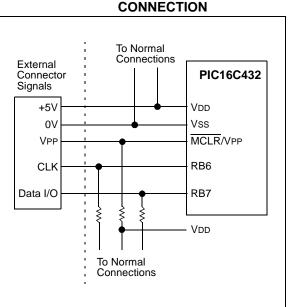
If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices.

9.10 **ID Locations**

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. Only the Least Significant 4 bits of the ID locations are used.

9.11 **In-Circuit Serial Programming**


The PIC16C432 microcontroller can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RB6 and RB7 pins low, while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After RESET, to place the device into Programming/ Verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X/9XX Programming Specifications (Literature #DS30228).

A typical in-circuit serial programming connection is shown in Figure 9-19.

FIGURE 9-19: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING

10.0 INSTRUCTION SET SUMMARY

Each PIC16C432 instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C432 instruction set summary in Table 10-2 lists **byte-oriented**, **bitoriented**, and **literal and control** operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight- or eleven-bit constant, or literal value.

TABLE 10-1:OPCODE FIELD
DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top-of-Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
ТО	Timeout bit
PD	Power-down bit
dest	Destination, either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 10-1 lists the instructions recognized by the MPASM assembler.

Figure 10-1 shows the three general formats that the instructions can have.

Note: To maintain upward compatibility with future PIC[®] products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations					
<u>13 8</u>	5 7	6		0	
OPCODE	d		f (FILE #)		
d = 1 for destina	d = 0 for destination W d = 1 for destination f f = 7-bit file register address				
Bit-oriented file regist	•			•	
13 1	9	7	6	0	
OPCODE	b (Bl	T #)	f (FILE #)		
Literal and control of General	oeratio				
13	8	7		0	
OPCODE			k (literal)		
k = 8-bit immediate value CALL and GOTO instructions only					
13 11 10)			0	
OPCODE		k (literal)		
k = 11-bit immediate value					

Mnemo	onic,	Description	Cycles	14-Bit Opcode				Status	Notes
Opera	nds	Description		MSb			LSb	Affected	NOLES
BYTE-OR	ENTED	FILE REGISTER OPERATIONS	•						
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIEN	NTED FIL	E REGISTER OPERATIONS	•						
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1(2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1(2)	01	11bb	bfff	ffff		3
LITERAL	AND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
	k	Exclusive OR literal with W	1	11	1010	kkkk		Z	

TABLE 10-2: PIC16C432 INSTRUCTION SET

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1) the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second is executed as a NOP.

10.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[label] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Encoding:	11 111x kkkk kkkk
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W regis- ter.
Words:	1
Cycles:	1
Example	ADDLW 0x15
	Before Instruction W = 0x10 After Instruction
	W = 0x25

ANDLW	AND Literal with W			
Syntax:	[label] /	ANDLW	k	
Operands:	$0 \le k \le 25$	55		
Operation:	(W) .AND	$0. (k) \rightarrow (k)$	N)	
Status Affected:	Z			
Encoding:	11	1001	kkkk	kkkk
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W regis- ter.			
Words:	1			
Cycles:	1			
Example	ANDLW	0x5F		
	Before In After Inst	W =	0xA3 0x03	

ADDWF	Add W and f			
Syntax:	[label] ADDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	$(W) + (f) \rightarrow (dest)$			
Status Affected:	C, DC, Z			
Encoding:	00 0111 dfff ffff			
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example	ADDWF FSR, 0			
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2			

ANDWF	AND W with f			
Syntax:	[label] ANDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) .AND. (f) \rightarrow (dest)			
Status Affected:	Z			
Encoding:	00 0101 dfff ffff			
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example	ANDWF FSR, 1			
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02			

BCF	Bit Clea	r f		
Syntax:	[<i>label</i>][BCF f,b		
Operands:	• = • = •	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		
Operation:	$0 \rightarrow (f < b$)		
Status Affected:	None			
Encoding:	01	00bb	bfff	ffff
Description:	Bit 'b' in	register 'f' i	is cleared	
Words:	1			
Cycles:	1			
Example	BCF	FLAG_RE	EG, 7	
	Fl After Ins	AG_REG LAG_REG truction LAG_REG		

BTFSC	Bit Test, Skip if Clear			
Syntax:	[label] B	TFSC f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ 0 \leq b \leq 7 \end{array}$	7		
Operation:	skip if (f<	b>) = 0		
Status Affected:	None			
Encoding:	01	10bb	bfff	ffff
Description:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two- cycle instruction.			truction ruction NOP is
Words:	1			
Cycles:	1 ⁽²⁾			
Example	HERE FALSE TRUE	BTFSC GOTO • •	FLAG,1 PROCES	S_CODE
	Before Instruction PC = address HERE After Instruction if FLAG<1>= 0, PC = address TRUE if FLAG<1>=1, PC = address FALSE			

BSF	Bit Set	f		
Syntax:	[label]	BSF f,b)	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f < t$	>)		
Status Affected:	None			
Encoding:	01	01bb	bfff	ffff
Description:	Bit 'b' in register 'f' is set.			
Words:	1			
Cycles:	1			
Example	BSF	FLAG_	REG,	7
	After Ins	nstructior FLAG_R struction FLAG_R	EG =	0x0A 0x8A

 $\ensuremath{\textcircled{}^{\circ}}$ 2000-2013 Microchip Technology Inc.

BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine	
Syntax:	[<i>label</i>] BTFSS f,b	Syntax:	[<i>label</i>] CALL k	
Operands:	$0 \leq f \leq 127$	Operands:	$0 \le k \le 2047$	
	0 ≤ b < 7	Operation:	(PC) + 1 \rightarrow TOS,	
Operation:	skip if (f) = 1		$k \rightarrow PC < 10:0>,$	
Status Affected:	None		$(PCLATH{<}4:3{>}) \rightarrow PC{<}12:11{>}$	
Encoding:	01 11bb bfff ffff	Status Affected:	None	
Description:	If bit 'b' in register 'f' is '1' then the	Encoding:	10 0kkk kkkk kkkk	
Words:	next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two- cycle instruction.	Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.	
	1 1(2)	Words:	1	
Cycles:		Cycles:	2	
Example	HERE BTFSS FLAG,1 FALSE GOTO PROCESS_CODE	Example	- HERE CALL THERE	
	FALSE GOTO PROCESS_CODE TRUE Before Instruction PC = address HERE After Instruction		Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1	
	if FLAG<1> = 0, PC = address FALSE	CLRF	Clear f	
	if FLAG<1> = 1, PC = address TRUE	Syntax:	[label] CLRF f	
		Operands:	$0 \le f \le 127$	
		Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$	
		Status Affected:	Z	
		Encoding:	00 0001 1fff ffff	
		Description:	The contents of register 'f' are cleared and the Z bit is set.	
		Words:	1	
		Cycles:	1	
		Example	CLRF FLAG_REG	
			Before Instruction FLAG_REG = 0x5A After Instruction	

Instruction FLAG_REG = 0x00 Z = 1

CLRW	Clear W	1		
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Encoding:	00	0001	0000	0011
Description:	W regist is set.	er is clea	ared. Zero	bit (Z)
Words:	1			
Cycles:	1			
Example	CLRW			
	After Ins	nstruction W = $0x5/$ struction W = $0x00$ Z = 1	A	

COMF	Complement f		
Syntax:	[<i>label</i>] COMF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	$(\overline{f}) \rightarrow (dest)$		
Status Affected:	Z		
Encoding:	00 1001 dfff ffff		
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.		
Words:	1		
Cycles:	1		
Example	COMF REG1,0		
	Before Instruction REG1 = 0x13 After Instruction REG1 = 0x13 W = 0xEC		

CLRWDT	Clear Watchdog Timer			
Syntax:	[label]	CLRWD	T	
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow PD \end{array}$			
Status Affected:	TO, PD			
Encoding:	00	0000	0110	0100
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.			
Words:	1			
Cycles:	1			
Example	CLRWDT			
	CLRWDT Before Instruction WDT counter = ? After Instruction WDT counter = 0x00 WDT prescaler = 0 $\overline{TO} = 1$ PD = 1			

DECF	Decrem	ent f		
Syntax:	[label]	DECF f,	d	
Operands:	$0 \le f \le 12$ $d \in [0,1]$			
Operation:	(f) - 1 \rightarrow	(dest)		
Status Affected:	Z			
Encoding:	00	0011	dfff	ffff
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example	DECF	CNT,	1	
	Before Ir After Ins	cNT = 0 $Z = 0$ $truction$ $CNT = 0$ $Z = 1$	x01	

DECFSZ	Decrement f, Skip if 0	INCF	Increment f
Syntax:	[label] DECFSZ f,d	Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0	Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	None	Status Affected:	Z
Encoding:	00 1011 dfff ffff	Encoding:	00 1010 dfff ffff
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruc- tion, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.	Description: Words: Cycles: Example	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in regis- ter 'f'. 1 INCF CNT, 1
Words:	1		Before Instruction CNT = 0xFF
Cycles:	1 ⁽²⁾		Z = 0
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • • • Before Instruction PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT¼ 0, PC = address HERE+1		After Instruction CNT = 0x00 Z = 1
GOTO			
Syntax: Operands:	[<i>label</i>] GOTO k 0 ≤ k ≤ 2047		
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> $\rightarrow PC<12:11>$		
Status Affected:	None		
Encoding:	10 1kkk kkkk kkkk		
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.		
Words:	1		
Cycles:	2		
E			

GOTO THERE After Instruction PC = Address THERE

Example

INCFSZ	Increment f, Skip if 0		
Syntax:	[<i>label</i>] INCFSZ f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0		
Status Affected:	None		
Encoding:	00 1111 dfff ffff		
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in regis- ter 'f'. If the result is 0, the next instruc- tion, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.		
Words:	1		
Cycles:	1 ⁽²⁾		
Example	HERE INCFSZ CNT, 1		
	GOTO LOOP CONTINUE • • •		
	Before Instruction PC = address HERE After Instruction CNT = CNT + 1 if $CNT = 0$, PC = address CONTINUE if $CNT \neq 0$, PC = address HERE + 1		

IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Encoding:	11 1000 kkkk kkkk
Description:	The contents of the W register are OR'ed with the eight bit literal 'k'. The result is placed in the W reg- ister.
Words:	1
Cycles:	1
Example	IORL 0x35 W
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 1
IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0100 dfff ffff
Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in regis- ter 'f'.
Words:	1
Cycles:	1
Example	IORWF RESULT, 0
	Before Instruction RESULT = $0x13$ W = 0x91 After Instruction RESULT = $0x13$ W = 0x93 Z = 1

MOVLW	Move Lit	eral to V	v	
Syntax:	[label]	MOVLW	/ k	
Operands:	$0 \le k \le 2$	55		
Operation:	$k \to (W)$			
Status Affected:	None			
Encoding:	11	00xx	kkkk	kkkk
Description:	0	er. The d	I 'k' is load on't cares	
Words:	1			
Cycles:	1			
Example	MOVLW	0x5A		
	After Inst V	ruction V = 0x5A	L.	

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) \rightarrow (dest)
Status Affected:	Z
Encoding:	00 1000 dfff ffff
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, des- tination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Encoding:	00 0000 lfff ffff
Description:	Move data from W register to regis- ter 'f'.
Words:	1
Cycles:	1
Example	MOVWF OPTION
	Before Instruction OPTION = 0xFF W = 0x4F After Instruction OPTION = 0x4F W = 0x4F

NOP	No Operation			
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No operation			
Status Affected:	None			
Encoding:	00	0000	0xx0	0000
Description:	No oper	ation.		
Words:	1			
Cycles:	1			
Example	NOP			

OPTION	Load Op	tion Reg	jister	
Syntax:	[label] OPTION			
Operands:	None			
Operation:	$(W) \rightarrow OPTION$			
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X prod- ucts. Since OPTION is a readable/ writable register, the user can directly address it.			
Words:	1			
Cycles:	1			
Example				
		uture Pl	ard comp C [®] produ ruction.	

RETLW	Return with Literal in W			
Syntax:	[label] RETL	_W k		
Operands:	$0 \leq k \leq 255$			
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$			
Status Affected:	None			
Encoding:	11 01xx	kkkk kkkk		
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.			
Words:	1			
Cycles:	2			
Example	CALL TABLE	;W contains table ;offset value ;W now has table		
TABLE	value •	, w now has table		
	ADDWF PC RETLW k1 RETLW k2 •	;W = offset ;Begin table ;		
	• RETLW kn	: End of table		
	Before Instruction W = 0x07 After Instruction W = value of k8			
RETURN	Return from S	ubroutine		

RETURN	Return	Return from Subroutine			
Syntax:	[label] RETURN				
Operands:	None				
Operation:	$\mathrm{TOS} \rightarrow$	$TOS \rightarrow PC$			
Status Affected:	None				
Encoding:	00	0000	0000	1000	
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.				
Words:	1				
Cycles:	2				
Example	RETUR	N			
	After Int P	errupt C = TOS			

RETFIE	Return f	from Inte	errupt	
Syntax:	[label]	RETFIE	=	
Operands:	None	None		
Operation:	$\begin{array}{c} TOS \rightarrow \\ 1 \rightarrow GIE \end{array}$	-)		
Status Affected:	None			
Encoding:	00	0000	0000	1001
-	loaded ir enabled rupt Ena	n the PC by settin ble bit, C N<7>). T	of-Stack (⁻ . Interrupts g Global I BIE his is a tw	s are nter-
Words:	1			
Cycles:	2			
Example	RETFIE			
	After Inte	errupt PC = TC GIE = 1	DS	

RLF	Rotate Left f through Carry	RRF	Rotate Right f through Carry		
Syntax:	[<i>label</i>] RLF f,d	Syntax:	[<i>label</i>] RRF f,d		
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in[0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	See description below	Operation:	See description below		
Status Affected:	С	Status Affected:	С		
Encoding:	00 1101 dfff ffff	Encoding:	00 1100 dfff ffff		
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in regis- ter 'f'.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. $C \rightarrow Register f \rightarrow C$		
Words:	1	Words:	1		
Cycles:	1	Cycles:	1		
Example	RLF REG1,0	Example	RRF REG1,0		
	Before Instruction $\begin{array}{c} \text{REG1} = 1110\ 0110\\ \text{C} = 0\\ \text{After Instruction}\\ \text{REG1} = 1110\ 0110\\ \text{W} = 1100\ 1100\\ \text{C} = 1\\ \end{array}$		Before Instruction REG1 = 1110 0110 $C = 0$ After Instruction REG1 = 1110 0110 $W = 0111 0011$ $C = 0$		

SLEEP

0111				
Syntax:	[label]	SLEEP		
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow W \\ 0 \rightarrow WDT \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$,	er,	
Status Affected:	TO, PD			
Encoding:	00	0000	0110	0011
Description:	The power cleared. 1 set. Watch prescaler The proce mode with See Section	Timeout s hdog Tim are clear essor is p n the osci	tatus bit, er and its ed. ut into SI llator sto	TO is EEP oped.
Words:	1			
Cycles:	1			
Example:	SLEEP			

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k \text{ - } (W) \to (W)$		d ∈ [0,1]
Status Affected:	C, DC, Z	Operation:	(f) - (W) \rightarrow (dest)
Encoding:	11 110x kkkk kkkk	Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's	Encoding:	00 0010 dfff ffff
	complement method) from the eight bit literal 'k'. The result is placed in the W register.	Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If
Words:	1		'd' is 1, the result is stored back in reg- ister 'f'.
Cycles:	1	Words:	1
Example 1:	SUBLW 0x02 Before Instruction	Cycles:	1
	W = 1	Example 1:	SUBWF REG1,1
	C = ?		Before Instruction
	After Instruction		REG1 = 3
	W = 1		W = 2 $C = ?$
F 1 0	C = 1; result is positive		After Instruction
Example 2:	Before Instruction W = 2		REG1 = 1
	VV = 2 C = ?		W = 2 C = 1: result is positive
	After Instruction	Example 2:	C = 1; result is positive Before Instruction
	W = 0	Example 2.	REG1 = 2
	C = 1; result is zero		W = 2
Example 3:	Before Instruction		C = ?
	W = 3 C = ?		After Instruction
	After Instruction		REG1 = 0 W = 2
	W = 0xFF		C = 1; result is zero
	C = 0; result is negative	Example 3:	Before Instruction
			REG1 = 1
			W = 2 C = ?
			After Instruction
			REG1 = 0xFF
			W = 2 C = 0; result is negative
			C = 0; result is negative

SWAPF	Swap Nibbles in f	XORLW	Exclusive OR Literal with W	
Syntax:	[label] SWAPF f,d	Syntax:	[<i>label</i>] XORLW k	
Operands:	$0 \le f \le 127$	Operands:	$0 \le k \le 255$	
	d ∈ [0,1]	Operation:	(W) .XOR. $k \rightarrow$ (W)	
Operation:	$(f<3:0>) \rightarrow (dest<7:4>),$ $(f<7:4>) \rightarrow (dest<3:0>)$	Status Affected:	Z	
Status Affected:	None $(1 \le 1 \le 3 \le $	Encoding:	11 1010 kkkk kkkk	
Encoding:	00 1110 dfff ffff	Description: The contents of the W register are XOR'ed with the eight bit literal 'k'.		
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0,		The result is placed in the W register.	
	the result is placed in W register. If 'd' is 1, the result is placed in regis-	Words:	1	
	ter 'f'.	Cycles:	1	
Words:	1	Example:	XORL 0xAF W	
Cycles:	1		Before Instruction	
Example	SWAPF REG, 0		$W = 0 \times B5$	
	Before Instruction		After Instruction	
	REG1 = 0xA5			
	After Instruction		W = 0x1A	
	REG1 = 0xA5 W = 0x5A			

TRIS	Load TRIS Register			
Syntax:	[<i>label</i>] TRIS f			
Operands:	$5 \le f \le 7$			
Operation:	(W) \rightarrow TRIS register f;			
Status Affected:	None			
Encoding:	00 0000 0110 0fff			
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.			
Words:	1			
Cycles:	1			
Example				
	To maintain upward compatibil- ity with future PIC [®] products, do not use this instruction.			

XORWF	Exclusive OR W with f		
Syntax:	[label] XORWF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	(W) .XOR. (f) \rightarrow (dest)		
Status Affected:	Z		
Encoding:	00 0110 dfff ffff		
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.		
Words:	1		
Cycles:	1		
Example	XORW REG 1 F		
	Before Instruction		
	REG = 0xAF W = 0xB5		
	After Instruction REG = 0x1A W = 0xB5		

11.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

11.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

11.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

11.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

11.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

11.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

11.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

11.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

11.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PIC MCUs and can be used to develop for this and other PIC microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial ProgrammingTM protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time.

11.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in Stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In Stand-alone mode, the PRO MATE II device programmer can read, verify, or program PIC devices. It can also set code protection in this mode.

11.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PIC devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

11.11 PICDEM 1 Low Cost PIC MCU Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A). PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44, All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

11.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I^2C^{TM} bus and separate headers for connection to an LCD module and a keypad.

11.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

11.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

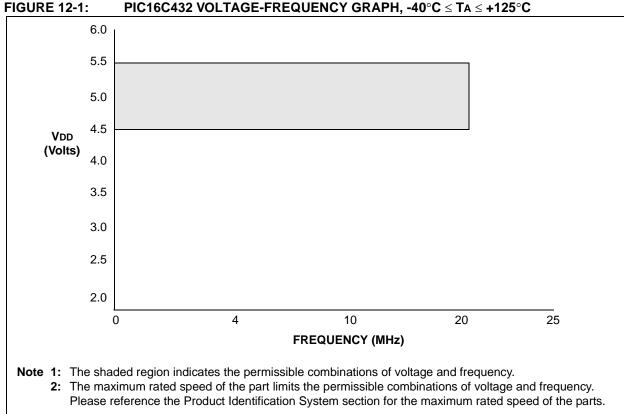
11.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

TABLE 11-1: DEVELOPMENT TOOLS FROM MICROCHIP

		PIC12CXX	PIC14000	PIC16C5X	PIC16C6X	PIC16CXX)	PIC16F62X	X7381319	(X7Dðrðig	PIC16C8X	PIC16F8X)	(X6O91OI9	PIC17C4X	(XTOTIOI9	PIC18CXX	PIC18FXX	83CXX 52CXX\ 54CXX\	хххэн	мсвеххх	MCP2510
MPLAB [®] Integrated Development Envire	MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB [®] C	MPLAB [®] C17 C Compiler												~	~						
MPLAB [®] C	MPLAB [®] C18 C Compiler														~	<				
MPASM TM MPLINK TM	MPASM™ Assembler/ MPLINK™ Object Linker	>	`	>	>	>	>	>	>	~	^	>	>	>	>	>	>	~		
MPLAB [®] IC	MPLAB [®] ICE In-Circuit Emulator	>	>	>	>	>	**`	>	>	>	>	>	>	>	>	>				
	ICEPIC TM In-Circuit Emulator	>		>	>	>		>	>	>		>								
MPLAB [®] IC Debugger	MPL AB® ICD In-Circuit Debugger				*>			*>			>					>				
PICSTART Developm	PICSTART® Plus Entry Level Development Programmer	>	>	>	`	>	×**	>	~	`	`	>	>	>	>	>				
PRO MATI Universal	PRO MATE® II Universal Device Programmer	>	>	>	>	>	**/	>	^	~	^	>	>	>	>	>	>	^		
PICDEM™ Board	PICDEM TM 1 Demonstration Board			>		>		÷+		>			>							
PICDEM [™] Board	PICDEM TM 2 Demonstration Board				.≁			÷,							>	>				
PICDEM [™] Board	PICDEM TM 3 Demonstration Board											>								
PICDEM [™] Board	PICDEM TM 14A Demonstration Board		>																	
PICDEM [™] Board	PICDEM TM 17 Demonstration Board													>						
KEELOQ [®] E	KEELoo® Evaluation Kit																	>		
KEELOQ [®] 7	KEELoq [®] Transponder Kit																	>		
microID™	microlD™ Programmer's Kit																		~	
125 kHz microlD™ Developer's Kit	nicrolD™ ''s Kit																		~	
125 kHz Anticol Developer's Kit	125 kHz Anticollision microlD™ Developer's Kit																		~	
13.56 MHz microlD™	13.56 MHz Anticollision microlD™ Developer's Kit																		~	
MCP2510 (MCP2510 CAN Developer's Kit																			>

 $\ensuremath{\textcircled{}^{\odot}}$ 2000-2013 Microchip Technology Inc.


NOTES:

12.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings †	
Ambient Temperature under bias	40° to +125°C
Storage Temperature	65° to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.6V to VDD +0.6V
Voltage on VDD with respect to VSS	0 to +7.0V
Voltage on RA4 with respect to Vss	8.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	8.5V
Voltage on LIN with respect to Vss	40V
Total power Dissipation (Note 1)	1.0 W
Maximum Current out of Vss pin	
Maximum Current into VDD pin	
Input clamp current by LIN pin, IIK (VI <0 or VI > VBAT	
Output clamp current by LIN pin, IOK (Vo <0 or Vo > VBAT)	
Input Clamp Current, Iк (VI <0 or VI> VDD)	±20 mA
Output Clamp Current, Iок (Vo <0 or Vo>VDD)	±20 mA
Maximum Output Current sunk by any I/O pin (source by VDD)	25 mA
Maximum Current sourced by any I/O pin (source by VDD)	25 mA
Maximum Current sunk by PORTA and PORTB (source by VDD)	
Maximum Current sourced by PORTA and PORTB (source by VDD)	
Maximum Current sunk by LIN pin (source by VBAT)	
Maximum Current sunk by BACT pin (source by VBAT)	1.8 mA
Note 1: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{M}}$	

this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

12.1 DC CHARACTERISTICS: PIC16C432 (Industrial, Extended)

DC CHA	RACTERIS	TICS		ard Op ting terr		ire	tions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial and -40°C \leq TA \leq +125°C for extended
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	4.5	—	5.5	V	See Figure 12-1 through Figure 12-3
D001A	VBAT	Battery Supply Voltage	8.0	13.8	18	V	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	-	1.5*	_	V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	-	Vss	—	V	See section on Power-on Reset for details
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	_		V/ms	See section on Power-on Reset for details
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared
	IDD	Supply Current ^{(2), (4)}					
D010			—	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT Osc mode, $(4)_{\star}$
			—	4.0	6.0	mA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS Osc mode
			—	4.0	7.0	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*, HS Osc mode
	IPD	Power-down Current ⁽³⁾					
D020			-		5.0 9.0 15	μΑ μΑ μΑ	$VDD = 4.5V^*$ VDD = 5.5V VDD = 5.5V Extended
D313	Δ IDD-LIN	LIN Transceiver Current ⁽⁵⁾			1	mA	LIN XCVR enabled
	∆Iwdt	WDT Current ⁽⁵⁾					
D022			_	6.0	10 12	μΑ μΑ	VDD = 4.0V (125°C)
D022A	Δ IBOR	Brown-out Reset Current ⁽⁵⁾	—	75	125	μA	BOD enabled, VDD = 5.0V
D023		Comparator Current for each Comparator ⁽⁵⁾	-	30	60	μA	VDD = 4.0V
D023A	Δ IVREF	VREF Current ⁽⁵⁾	_	80	135	μA	VDD = 4.0V

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in $k\Omega$.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.2 DC CHARACTERISTICS: PIC16C432 (Industrial, Extended)

			Standard Opera	ting Co	onditions (unl	less of	therwise stated)
		DISTICS	Operating tempe				5°C for industrial and
	ARACIE	RISTICS			-40°C ≤ T	A ≤ +1	25°C for extended
			Operating voltage	e Vdd i	range as descr	ibed in	DC spec Table 12.3
Parm No.	Sym	Characteristic	Min	Тур†	Max	Unit	Conditions
	VIL	Input Low Voltage					·
		I/O ports					
D030		with TTL buffer	Vss	—	0.8V 0.15 Vdd	V	VDD = 4.5V to 5.5V, Otherwise
D031		with Schmitt Trigger input	Vss		0.2 Vdd	V	
D032		MCLR, RA4/T0CKI,OSC1	Vss	—	0.2 Vdd	V	(Note 1)
		(in RC mode)					
D033		OSC1 (in XT and HS)	Vss	—	0.3 Vdd	V	
		OSC1 (in LP)	Vss	—	0.6 Vdd - 1.0		
D034		Low level input voltage	-8	—	0.4 Vbat	V	Dominant State
	Vін	Input High Voltage					
		I/O ports				.,	
D040		with TTL buffer	2.0V	-	VDD	V	VDD = 4.5V to 5.5V
D044			.25 VDD + 0.8V		VDD		
D041		with Schmitt Trigger input	0.8 VDD		VDD		
D042			0.8 VDD	_	VDD	V	
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	_	Vdd	V	(Note 1)
D043A D044		High level input voltage	0.9 VDD 0.6 VBAT		18	V	Recessive State
D044 D070		PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS
0070		Input Leakage Current ^{(2), (3)}	50	200	400	μл	VDD = 3.00, VFIN = V33
	lı∟			1			Γ
		I/O ports (Except PORTA)			±1.0	μA	VSS \leq VPIN \leq VDD, pin at hi-impedance
D060		PORTA	—	-	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance
D061		RA4/T0CKI	—	-	±1.0	μA	Vss ≤ VPIN ≤ VDD
D063		OSC1, MCLR	_	_	±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
D064	_	High level output leakage current	_	—	±20	μA	VBUS \leq VBAT; VBUS < 40V
	Vol	Output Low Voltage					
D080		I/O ports	_	-	0.6	V	IOL=8.5 mA, VDD=4.5V, -40° to +85°C
			_	-	0.6	V	IOL=7.0 mA, VDD=4.5V, +125°C
D083		OSC2/CLKOUT (RC only)	—	-	0.6	V	IOL=1.6 mA, VDD=4.5V, -40° to +85°C
			—	-	0.6	V	IOL=1.2 mA, VDD=4.5V, +125°C
D084		BACT	—	-	TBD		TBD
D085	VOL_LIN	Low level output voltage		-	0.2 VBAT	V	IOL = 200 mA
		(2)					VBUS = 12V
	Vон	Output High Voltage ⁽³⁾		1			
D090		I/O ports (Except RA4)	VDD-0.7	-	_	V	IOH=-3.0 mA, VDD=4.5V, -40° to +85°C
Daca			VDD-0.7			V	IOH=-2.5 mA, VDD=4.5V, +125°C
D092		OSC2/CLKOUT (RC only)	VDD-0.7			V	IOH=-1.3 mA, VDD=4.5V, -40° to +85°C
Daca	.,	2.07	VDD-0.7			V	IOH=-1.0 mA, VDD=4.5V, +125°C
D093		BACT	4.0V			V	VBAT = 18V, VDD = 5.0V, IOH = 1.8 mA
D094	_	High level output voltage	0.8 Vbat	-		V	
D150*	Vod	Open-Drain High Voltage			8.5	V	RA4 pin

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C432 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: LIN tested 4 MHz, 14.4V VBAT, 5.0V VDD.

12.2 DC CHARACTERISTICS: PIC16C432 (Industrial, Extended)

DC CH	ARACTE	RISTICS	Operating te	mperature	-40°C ≤ -40°C ≤	TA ≤ +8 TA ≤ +1	t herwise stated) 5°C for industrial and 25°C for extended 1 DC spec Table 12.3
Parm No.	Sym	Characteristic	Min	Тур†	Мах	Unit	Conditions
		Capacitive Loading Specs on Output Pins					
D100	Cosc2	OSC2 pin			15*	pF	In XT, HS and LP modes when external clock used to drive OSC1
100A	CLIN	LIN ⁽⁴⁾			10*	nF	
100B	Сваст	BACT			50*	pF	
D101	Cio	All I/O pins/OSC2 (in RC mode)			50*	pF	

parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C432 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: LIN tested 4 MHz, 14.4V VBAT, 5.0V VDD.

12.3 LIN Transceiver Bus Interface **Specifications**

Operatin	g Conditions: VDD	range as described in Table	12-1, -40°C <	<ta< +1<="" th=""><th>25°C</th><th></th><th></th></ta<>	25°C		
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments
D315	IOL_LIN_DOMINAT	Low level output current	40	_	200	mA	VBUS = 12V
D317	IOH_LIN_REVERS	Low level output current, open ground	-1	_	1	mA	
D320*	VHYS_LIN	Input hysteresis	0.05 Vbat	_	0.1Vbat	V	VIH_LIN - VIL_LIN
D321*	ISC_LIN	Short circuit current limit	0.05	—	200	mA	

* These parameters are characterized but not tested.

12.4 **Comparator Specifications**

Operating (Conditions	: VDD range as described in Table	e 12-1, -40°	C <ta< +′<="" th=""><th>125°C</th><th></th><th></th></ta<>	125°C		
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
D300	VIOFF	Input Offset Voltage		± 5.0	± 10	mV	
D301	VICM	Input Common Mode Voltage	0		Vdd - 1.5	V	
D302	CMRR	CMRR	+55*			db	
300	TRESP	Response Time ⁽¹⁾		150*	400*	ns	
301	Тмс2оv	Comparator Mode Change to Output Valid			10*	μS	

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

12.5 **Voltage Reference Specifications.**

Operating	Condition	s: VDD range as described	in Table 12-	1, -40°C	<ta< +125°c<="" th=""><th>;</th><th></th></ta<>	;	
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
D310	VRES	Resolution	Vdd/24		Vdd/32	LSB	
D311	VRAA	Absolute Accuracy			<u>+</u> 1/4 <u>+</u> 1/2	LSB LSB	Low Range (VRR=1) High Range (VRR=0)
D312	VRur	Unit Resistor Value (R)		2K*		Ω	Figure 8.1
310	TSET	Settling Time ⁽¹⁾			10*	ms	

* These parameters are characterized but not tested.

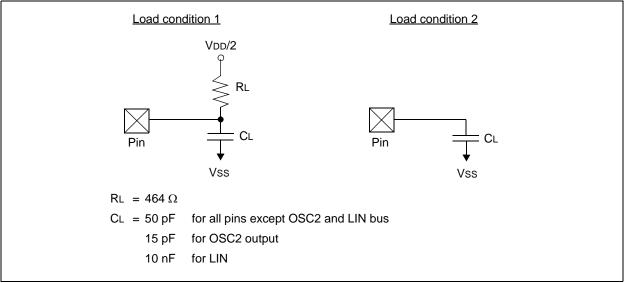
Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.

12.6 LIN Transceiver Operating Specifications.

Operating	Conditions: VDD range as de	escribed in	Table 12-1,	-40°C <t∕< th=""><th>∖< +125°C</th><th></th><th></th></t∕<>	∖< +125°C		
Param No.	Characteristics	Sym	Min	Тур	Max	Units	Comments
D313	VDD Quiescent Operating Current	IDD_LIN	—	_	1	mA	
D314	VBAT Low Power Current	IBAT	—	—	50	μA	

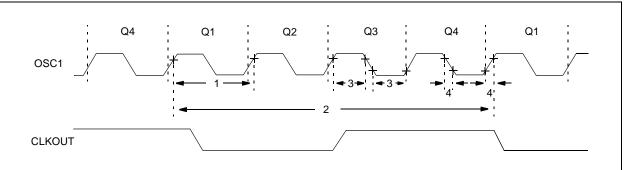
* These parameters are characterized but not tested.

12.7 Timing Parameter Symbology


The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

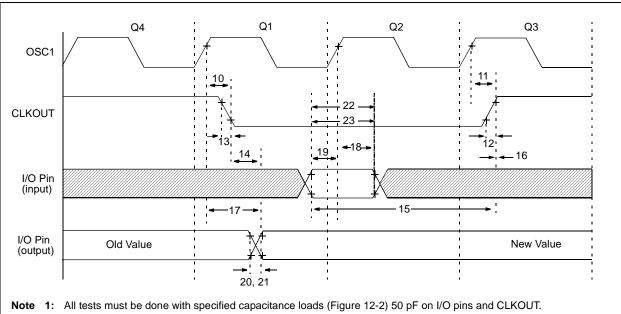
2. TppS


2. Tpp5			
т			
F	Frequency	Т	Time
Lowerc	ase subscripts (pp) and their meanings:		
рр			
ck	CLKOUT	OSC	OSC1
io	I/O port	tO	TOCKI
mc	MCLR		
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-Impedance

12.8 Timing Diagrams and Specifications

FIGURE 12-3: EXTERNAL CLOCK TIMING

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS


Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
1A	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	4	MHz	XT and RC Osc mode, VDD=5.0V
			DC	—	20	MHz	HS Osc mode
			DC	—	200	kHz	LP Osc mode
		Oscillator Frequency ⁽¹⁾	DC	_	4	MHz	RC Osc mode, VDD=5.0 OV
			0.1	—	4	MHz	XT Osc mode
			1	—	20	MHz	HS Osc mode
			DC	-	200	kHz	LP Osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	250	—	—	ns	XT and RC Osc mode
			50	_	—	ns	HS Osc mode
			5	—	—	ms	LP Osc mode
		Oscillator Period ⁽¹⁾	250	—	_	ns	RC Osc mode
			250	—	10,000	ns	XT Osc mode
			50	—	1,000	ns	HS Osc mode
			5	—	—	ms	LP Osc mode
2	Тсу	Instruction Cycle Time ⁽¹⁾	200	—	DC	ns	Tcy=Fosc/4
3*	TosL,	External Clock in (OSC1) High or	100*	—	—	ns	XT oscillator, Tosc L/H duty cycle
	TosH	Low Time	2*	—	—	ms	LP oscillator, Tosc L/H duty cycle
			20*	—	—	ns	HS oscillator, Tosc L/H duty cycle
4*	TosR,	External Clock in (OSC1) Rise or	25*	—	—	ns	XT oscillator
	TosF	Fall Time	50*	—	—	ns	LP oscillator
			15*	—	—	ns	HS oscillator

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

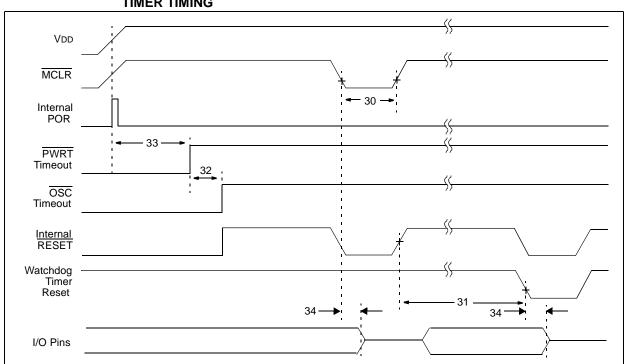
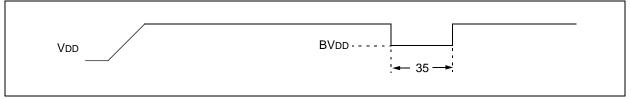

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units
10*	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾	_	75	200	ns
11*	TosH2ckH	OSC1↑ to CLKOUT↑ ⁽¹⁾	—	75	200	ns
12*	TckR	CLKOUT rise time ⁽¹⁾	—	35	100	ns
13*	TckF	CLKOUT fall time ⁽¹⁾	—	35	100	ns
14*	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	_	—	20	ns
15*	TioV2ckH	Port in valid before CLKOUT↑ ⁽¹⁾	Tosc +200 ns	—		ns
16*	TckH2iol	Port in hold after CLKOUT ↑ ⁽¹⁾	0	—		ns
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid	—	50	150	ns
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	100	—	_	ns
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in setup time)	0	—		ns
20*	TioR	Port output rise time	—	10	40	ns
21*	TioF	Port output fall time	—	10	40	ns
22*	Tinp	RB0/INT pin high or low time	25	—		ns
23	Trbp	RB<7:4> change interrupt high or low time	Тсү	—	_	ns

TABLE 12-2: CLKOUT AND I/O TIMING REQUIREMENTS

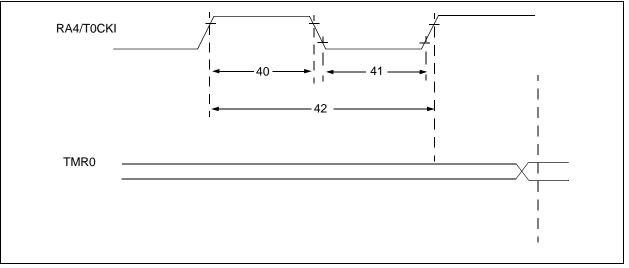
These parameters are characterized but not tested.


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

FIGURE 12-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 12-6: BROWN-OUT RESET TIMING


TABLE 12-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2000	_		ns	-40° to +85°C
31	Twdt	Watchdog Timer Timeout Period (No Prescaler)	7*	18	33*	ms	VDD = 5.0V, -40° to +85°C
32	Tost	Oscillation Start-up Timer Period	—	1024 Tosc	_	_	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5.0V, -40° to +85°C
34	Tioz	I/O hi-impedance from MCLR low		_	2.0	ms	
35	TBOR	Brown-out Reset Pulse Width	100*	—	_	ms	$3.7V \leq V\text{DD} \leq 4.3V$
*	These para	ameters are characterized but not test	ed.		-	•	•

These parameters are characterized but not tested.

Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

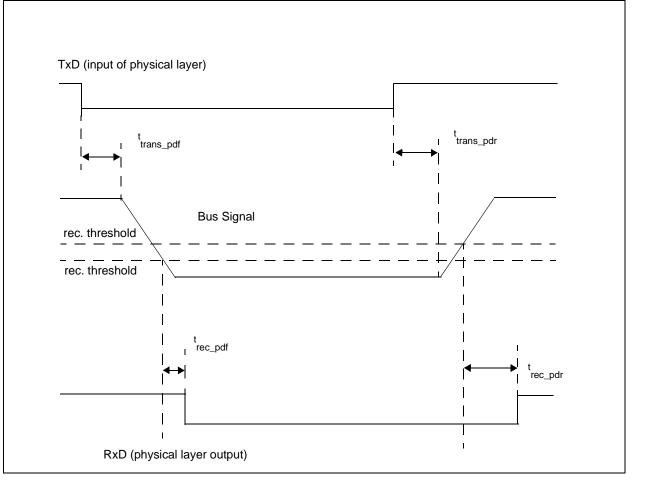
TABLE 12-4 :	TIMER0 CLOCK REQU	JIREMENTS
---------------------	-------------------	-----------

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5 TCY + 20*	_	—	ns	
			With Prescaler	10*	_	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5 TCY + 20*	—	_	ns	
			With Prescaler	10*	—	—	ns	
42	Tt0P	T0CKI Period		<u>Tcy + 40</u> * N			ns	N = prescale value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 12-5: LIN AC CHARACTERISTICS

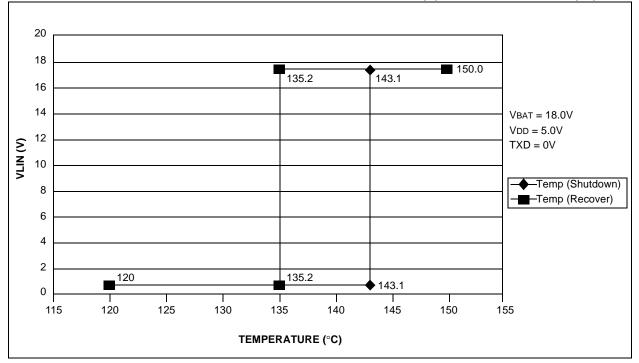

Symbol	Parameter	Min.	Тур.	Max.	Unit	Note
dV/dt	Slope rising and falling edges	1	2	3	V/µs	(Note 1)
T _{trans_pd}	Propagation delay of transmitter			4	μS	T _{trans_pd} = max(T _{trans_pdr} or T _{trans_pdf})
T _{rec_pd}	Propagation delay of receiver			6	μS	$T_{rec_pd} = max (T_{rec_pdr} \text{ or } T_{rec_pdf})$
T _{rec_sym}	Symmetry of receiver propaga- tion delay rising edge w.r.t. fall- ing edge	-2		2	μS	$T_{rec_sym} = T_{rec_pdf} - T_{rec_pdr}$
T _{trans_sym}	Symmetry of transmitter propa- gation delay rising edge w.r.t. falling edge	-2		2	μs	T _{trans_sym} = T _{trans_pdf} - T _{rans_pdr}

Note 1: Rising edge is system dependent. Value is characterized but not tested.

TABLE TE V.					
Symbol	Parameter	Тур.	Max.	Unit	Note
Θ _{recovery}	Recovery Temperature	+135		°C	Information Parameter
Θ _{shutdown}	Shutdown Temperature	+155		°C	Information Parameter
T _{THERM}	Thermal Recovery Time		1.5	ms	Information Parameter

TABLE 12-6: LIN THERMAL CHARACTERISTICS

FIGURE 12-8: TIMING DIAGRAM

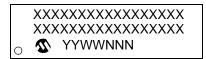


13.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs and tables, the data presented is **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'max' or 'min' represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.

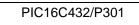

FIGURE 13-1: LIN TRANSCEIVER SHUTDOWN HYSTERESIS (V) VS. TEMPERATURE (°C)

NOTES:

14.0 PACKAGING INFORMATION

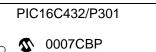
14.1 Package Marking Information

20-Lead CERDIP Windowed


20-Lead SSOP

20-Lead PDIP

Example

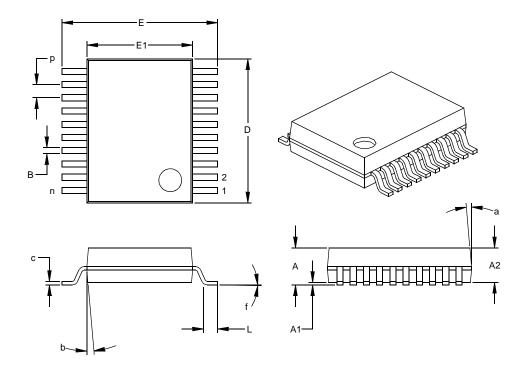

_о 🐼 0007СВР

Example

Example

0

Legend:	XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information.


 $\ensuremath{\textcircled{}^{\odot}}$ 2000-2013 Microchip Technology Inc.

20-Lead Ceramic Dual In-Line with Window (JW) - 300 mil (CERDIP)

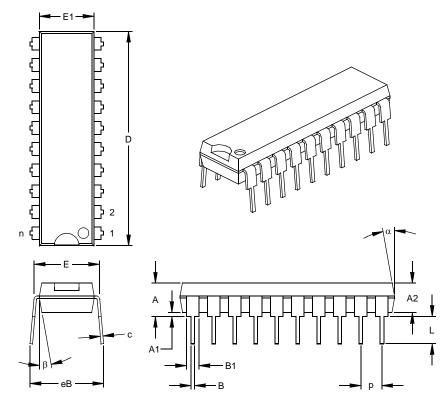
Package drawing not available at this time.

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*			MILLIMETERS		
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		20			20		
Pitch	р		.026			0.65		
Overall Height	А	.068	.073	.078	1.73	1.85	1.98	
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83	
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25	
Overall Width	Е	.299	.309	.322	7.59	7.85	8.18	
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38	
Overall Length	D	.278	.284	.289	7.06	7.20	7.34	
Foot Length	L	.022	.030	.037	0.56	0.75	0.94	
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25	
Foot Angle	f	0	4	8	0.00	101.60	203.20	
Lead Width	В	.010	.013	.015	0.25	0.32	0.38	
Mold Draft Angle Top	а	0	5	10	0	5	10	
Mold Draft Angle Bottom	b	0	5	10	0	5	10	

* Controlling Parameter § Significant Characteristic


Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150

Drawing No. C04-072

20-Lead Plastic Dual In-Line (P) - 300 mil (PDIP)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.295	.310	.325	7.49	7.87	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	1.025	1.033	1.040	26.04	26.24	26.42
Tip to Seating Plane	L	.120	.130	.140	3.05	3.30	3.56
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.055	.060	.065	1.40	1.52	1.65
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001

Drawing No. C04-019

APPENDIX A: CODE FOR LIN COMMUNICATION

Please check our web site at www.microchip.com for code availability.

APPENDIX B: REVISION HISTORY

Revision C (January 2013)

Added a note to each package outline drawing.

© 2000-2013 Microchip Technology Inc.

NOTES:

INDEX

Α	
ADDLW Instruction	62
ADDWF Instruction	
ANDLW Instruction	62
ANDWF Instruction	62
Assembler	
MPASM Assembler	73

В

BCF Instruction	63
Block Diagram	
TIMER0	27
TMR0/WDT PRESCALER	
Brown-out Detect (BOD)	
BSF Instruction	63
BTFSC Instruction	63
BTFSS Instruction	64

С

CALL Instruction	64
CLRF Instruction	64
CLRW Instruction	65
CLRWDT Instruction	65
CMCON Register	
Code Protection	
COMF Instruction	65
Comparator Configuration	
Comparator Interrupts	
Comparator Module	33
Comparator Operation	
Comparator Reference	
Configuration Bits	43
Configuring the Voltage Reference	
Crystal Operation	45

D

Data Memory Organization	7
DECF Instruction	65
DECFSZ Instruction	
Development Support	73

Е

Errata2
External Crystal Oscillator Circuit46

G

General Purpose Register File7
GOTO Instruction

I

-	
I/O Ports	17
I/O Programming Considerations	
ICEPIC In-Circuit Emulator	74
ID Locations	
INCF Instruction	66
INCFSZ Instruction	67
In-Circuit Serial Programming	
Indirect Addressing, INDF and FSR Registers	16
Instruction Set	
ADDLW	62
ADDWF	62
ANDLW	62
ANDWF	62

BCF	63
BSF	63
BTFSC	63
BTFSS	64
CALL	64
CLRF	64
CLRW	65
CLRWDT	65
COMF	65
DECF	65
DECFSZ	66
GOTO	66
INCF	66
INCFSZ	67
IORLW	67
IORWF	67
MOVF	68
MOVLW	68
MOVWF	68
NOP	68
OPTION	69
RETFIE	
RETLW	69
RETURN	69
RLF	-
RRF	
SLEEP	-
SUBLW	
SUBWF	
SWAPF	
TRIS	
XORLW	
XORWF	
Instruction Set Summary	
INT Interrupt	
INTCON Register	
Interrupts	
IORLW Instruction	
IORWF Instruction	67

Κ

L

LIN Hardware Interface	23
LIN Interfacing	23
LIN Protocol	23
LIN Transceiver	23

Μ

MOVF Instruction
MOVLW Instruction
MOVWF Instruction
MPLAB C17 and MPLAB C18 C Compilers73
MPLAB ICD In-Circuit Debugger75
MPLAB ICE High Performance Universal In-Circuit Emulator
with MPLAB IDE74
MPLAB Integrated Development Environment Software 73
MPLINK Object Linker/MPLIB Object Librarian 74
N
NOP Instruction

0

One-Time-Programmable (OTP) Devices5

PIC16C432

OPTION Instruction	69
OPTION Register	11
Oscillator Configurations	45
Oscillator Start-up Timer (OST)	48

Ρ

Package Marking Information	. 93
Packaging Information	. 93
PCL and PCLATH	
PCON Register	14
PICDEM 1 Low Cost PIC MCU Demonstration Board	
PICDEM 17 Demonstration Board	. 76
PICDEM 2 Low Cost PIC16CXX Demonstration Board	.75
PICDEM 3 Low Cost PIC16CXXX Demonstration Board	.76
PICSTART Plus Entry Level Development Programmer	.75
PIE1 Register	. 13
PIR1 Register	13
Port RB Interrupt	. 54
PORTA	. 17
PORTB	. 20
Power Control/Status Register (PCON)	49
Power-down Mode (SLEEP)	. 57
Power-on Reset (POR)	. 48
Timeout (TO Bit)	. 10
Power-up Timer (PWRT)	48
Prescaler	. 30
Program Memory Organization	7

Q

R

RC Oscillator	
RESET	
RETFIE Instruction	
RETLW Instruction	
RETURN Instruction	
RLF Instruction	70
RRF Instruction	70

S

Serialized Quick-Turn-Programming (SQTP) Devices	5
SLEEP Instruction	70
Software Simulator (MPLAB SIM)	74
Special Features of the CPU	43
Special Function Registers	
Stack	15
STATUS Register	
DC Bit	10
IRP Bit	10
TO Bit	10
Z Bit	10
Status Register	10
SUBLW Instruction	
SUBWF Instruction	71
SWAPF Instruction	72
т	
•	
Thermal Shutdown	23
Timer0	
TIMER0	
TIMER0 (TMR0) Interrupt	27
TIMER0 (TMR0) Module	
TMR0 with External Clock	29

Timer1

Switching Prescaler Assignment Timing Diagrams and Specifications TMR0 Interrupt TRIS Instruction TRISA TRISB	86 54 72 17
v	
Voltage Reference Module	41

w	
Watchdog Timer (WDT)	56
WWW, On-Line Support	2

Х

XORLW Instruction	.72
XORWF Instruction	. 72

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent			
	Name				
1 10111.					
	Company Address				
	City / State / ZIP / Country				
	Telephone: ()	FAX: ()			
Application (optional):					
Would	d you like a reply? Y N				
Devic					
Quest	tions:				
1. W	1. What are the best features of this document?				
_					
2. H	2. How does this document meet your hardware and software development needs?				
_					
3. D	Do you find the organization of this document easy to follow? If not, why?				
-					
4. W	What additions to the document do you think would enhance the structure and subject?				
_					
5. W	What deletions from the document could be made without affecting the overall usefulness?				
_					
6. Is	Is there any incorrect or misleading information (what and where)?				
_					
7. H	ow would you improve this document?				
_					

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X <u>/XX XXX</u> Temperature Package Pattern Range	Examples: a) PIC16C432-E/P301 = Extra Temp, PDIP pack- age, 4 MHz, normal VDD limits, QTP pattern #301 b) PIC16C432-I/SS Industrial Temp., SSOP pack-
Device	PIC16C432: VDD range 4.0 V to 5.5 V PIC16C432T: VDD range 4.0 V to 5.5 V (Tape and Reel)	 PIC16C432-I/SS Industrial Temp., SSOP pack- age, 4 MHz, industrial VDD limits
Temperature Range	$ \begin{array}{rcl} I &=& -40^{\circ}\text{C to} & +85^{\circ}\text{C} \\ E &=& -40^{\circ}\text{C to} & +125^{\circ}\text{C} \end{array} \end{array} $	
Package	SS = SSOP JW* = Windowed CERDIP	
Pattern	3-Digit Pattern Code for QTP (blank otherwise).	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Worldwide Site (www.microchip.com)

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2000-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Rinted on recycled paper.

ISBN: 9781620769720

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12